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Abstract
Breast cancer is a significant health concern worldwide,
and accurate classification of breast cancer histopathol-
ogy images plays a crucial role in diagnosis and treat-
ment planning. In this study, the performance of ma-
chine learning (ML) and deep learning (DL) approaches
for breast cancer classification is investigated. The ML
approach employs Random Forest, Support Vector Ma-
chines (SVM), and K-Nearest Neighbors (KNN) algo-
rithms, while the DL approach utilizes transfer learn-
ing with DenseNet. The ML models are evaluated using
the Area Under the Curve (AUC) metric, while the DL
model is assessed based on test accuracy and loss.
The results of the ML approach indicate moderate per-
formance, with AUC values ranging from 0.48 to 0.56
for the tested algorithms. The DL approach achieves
an overall test accuracy of 0.7150, indicating that the
model correctly classifies breast cancer samples 71%
of the time. The analysis of the DL model using ROC
curves reveals varying AUC values for different classi-
fication classes, ranging from 0.92 to 0.98.
These findings suggest opportunities for improving
the classification system’s performance. Further ex-
ploration of feature engineering, hyperparameter tun-
ing, alternative DL models, and additional preprocess-
ing techniques could enhance the accuracy and effec-
tiveness of breast cancer classification. Ultimately, ad-
vancements in ML and DL techniques hold promise for
improving breast cancer detection and diagnosis.

Introduction
Using DenseNet(Vulli et al. 2022). Breast cancer is a perva-
sive and life-threatening disease, affecting a significant num-
ber of women worldwide. Its impact on women’s health is
staggering, with statistics indicating that one in nine women
will experience breast cancer during their lifetime. More-
over, breast cancer is the leading risk factor for cancer in
women and ranks seventeenth among the major causes of
global mortality (Garcia et al. 2021).

Metastatic breast cancers (MBCs), which originate from
the lymphatic and blood vessels and spread to distant parts
of the body, contribute significantly to breast cancer mortal-
ity (Walters et al. 2019). The prognosis, precise diagnosis,
and treatment of MBCs pose substantial challenges due to
variations in metastasis rate and location, which depend on
the tumor subtype.

Accurate examination of lymph nodes is crucial for can-
cer diagnosis and determining appropriate treatment op-
tions. However, the manual screening of numerous slides
by pathologists can be laborious and challenging, and pa-
tients often need to undergo multiple scans for accurate
assessment, which can be hazardous. In recent years, ad-
vancements in automated tissue categorization using ma-
chine learning techniques have enabled precise identification
of metastases in lymph node tissue. Computer-aided diag-
nosis and digital pathology have made significant progress,
allowing for slide digitalization and enhanced image quality
similar to traditional light microscopy. Digital pathology re-
duces human errors and offers remote viewing and analysis
capabilities, thereby decreasing the dependence on on-site
expertise (Pham et al. 2019).

Although numerous studies have explored the function-
ality of artificial intelligence (AI) techniques in breast can-
cer diagnosis, including region of interest (ROI) identifica-
tion, cell characterization, and classification, deep learning
(DL) models have shown great potential due to their abil-
ity to automatically extract features and process complex in-
formation. DL models, particularly CNNs, have been exten-
sively used for the automated classification of breast can-
cer histopathological images, with researchers worldwide
investing considerable efforts to develop robust computer-
aided tools. However, challenges such as overfitting, limited
availability of labeled images, and the need for large training
datasets still exist(Wakili et al. 2022).

To address these challenges, transfer learning, a tech-
nique that leverages knowledge from a related domain to im-
prove model efficiency and performance, has gained promi-
nence in breast cancer diagnosis. Researchers have pro-
posed transfer learning-based approaches to achieve state-
of-the-art performance on different datasets, demonstrating
the potential of this approach in improving classification ac-
curacy and efficiency. However, further advancements are
necessary to refine performance metrics, overcome algorith-
mic assumptions, and simplify computational complexities
(Vulli et al. 2022).

To accomplish this task, the BreakHis dataset (Spanhol et
al. 2015) will be utilized. The BreakHis dataset is widely
used in breast cancer research and consists of histopatho-
logical images with detailed annotations. However, several
challenges need to be addressed during the classification



process. Firstly, the dataset poses an unbalanced classifica-
tion problem, with variations in the number of samples avail-
able for each class. Secondly, a hierarchical classification
approach may be required for multiclass classification, as
the dataset includes multiple levels of classification. Lastly,
the classification task needs to be performed on multiscale
images, which adds complexity to the analysis.

In this paper, the use of machine intelligence and transfer
learning in breast cancer diagnosis is explored to enhance
the accuracy, efficiency, and generalization ability of classi-
fication models. A novel approach is presented that utilizes
a pre-trained CNN model, DenseNet, and investigates the
benefits of transfer learning in improving the classification
performance of breast cancer histopathological images. By
addressing the limitations of current methodologies, the aim
is to contribute to the development of intelligent algorithms
for breast cancer diagnosis.

Methodology
Dataset
General description The BreaKHis dataset (Spanhol et
al. 2015) is a comprehensive collection of biopsy images
depicting both benign and malignant breast tumors. These
images were meticulously gathered through clinical studies
conducted from January to December 2014. During this pe-
riod, patients exhibiting clinical symptoms of breast cancer
were invited to participate in the study, and samples were ob-
tained via surgical open biopsy (SOB). These samples were
then stained with hematoxylin and eosin to enhance the visi-
bility of cellular structures. The resulting images, which un-
derwent thorough examination by pathologists in the P&D
laboratory, serve as valuable resources for histological stud-
ies.

Comprising a total of 7,909 images, the BreaKHis dataset
encompasses tissue samples from 82 patients. These sam-
ples have been categorized into two main groups: benign and
malignant tumors. Among them, there are 2,480 images of
benign tumors, which originate from 24 patients, and 5,429
images of malignant tumors, gathered from 58 patients. To
further classify the tumors, each group is subdivided into
four distinct subclasses. The benign tumor category includes
adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and
tubular adenoma (TA), while the malignant tumor category
consists of ductal carcinoma (DC), lobular carcinoma (LC),
mucinous carcinoma (MC), and papillary carcinoma (PC).

Magnification Benign Malignant Total
40X 625 1,370 1,995

100X 644 1,437 2,081
200X 623 1,390 2,013
400X 588 1,232 1,820
Total 2,480 5,429 7,909

Table 1: Distribution of the BreakHis dataset by magnifica-
tion.

All images within the BreaKHis dataset are captured in a
true-color space using the RGB model, allowing for a com-
prehensive representation of color variations. These images

exhibit different magnifications, ranging from 40X to 400X,
providing insights into tumor morphology at various levels
of detail. Each image has a size of 700x460 pixels, offering a
substantial amount of information for analysis and research
purposes.

Figure 1: Representative examples of magnifications of
BreaKHis dataset.

Data Splitting
The BreakHis dataset was divided into a training set and a
test set with a ratio of 60 and 40 respectively. This split-
ting ratio ensured a sufficient amount of data for training the
machine learning models while reserving a separate portion
for evaluation. The folder structure of the dataset was rear-
ranged to facilitate organization and easy access to the data.
The principal component for rearranging the folder structure
was based on the eight classes for tumors, consisting of four
malignant types and four benign types. The new folder struc-
ture incorporated the concept of magnification levels (40X,
100X, 200X, 400X), allowing for further differentiation and
classification of the images.

The magnification levels, played a crucial role in the
folder structure rearrangement. Each magnification level
was treated as a distinct subset within the dataset, ensur-
ing that images captured at different levels of magnification
were appropriately organized.

Data Augmentation
Data augmentation is a widely adopted technique that ad-
dresses the challenge of limited training data. By artifi-
cially expanding the dataset through the application of di-
verse transformations and modifications to existing samples,
data augmentation enhances model generalization and per-
formance. ImageDataGenerator class from Keras was ap-
plied to perform data augmentation. This technique enables
the creation of augmented data generators for the training,
validation, and testing sets.

The technique was initialized with the target size of the
images and the directory paths for the training, validation,
and testing data sets. A random seed was set to ensure re-
producibility. The training data generator was configured
with several augmentation techniques (Re-scaling, Rota-
tion, Width, and Height Shift, Shearing, Zooming, Horizon-
tal Flipping, Brightness Adjustment, and Fill Mode). The
training data generator is created, which reads the train-
ing images from the specified directory and applies the de-
fined augmentation techniques. The generated batches have



a batch size of 32 and follow a categorical class mode.
The validation and testing data generators were created. For
these sets, only re-scaling is applied to ensure consistency in
pre-processing. The validation generator generates batches
of size 64, while the testing generator uses a larger batch
size of 1,024.

The second approach was addressed with the focal loss
function, a specialized loss function designed to address the
issue of class imbalance. It introduces a weighting mecha-
nism that assigns higher importance to misclassified sam-
ples, particularly those belonging to the minority class. In
addition to data augmentation, the focal loss is implemented
to further enhance the performance. The focal loss function
is defined using TensorFlow and Keras.

Feature Extraction and Selection
In this study, a feature extraction method is employed based
on the DenseNet model. The process of feature extraction
involved several steps. Firstly, the DenseNet169 with Ima-
geNet weights has been used for feature extraction, enabling
it to capture high-level visual patterns.

Next, for each image, the following operations were per-
formed:
• Firstly, the image was loaded and resized to match the

input size required by DenseNet169.
• The image was preprocessed ensuring the normalization

and formatting necessary for the DenseNet model.
• The preprocessed image was then fed into the

DenseNet169 model generating a feature represen-
tation capturing the image’s distinctive characteristics.

• To facilitate further processing and analysis, the extracted
features were flattened into a 1D array.
The method was applied iteratively to process multiple

images. Each image was individually processed, resulting
in a set of extracted features for each image. These fea-
tures were collected in a list and subsequently converted into
numpy arrays for further processing or analysis.

Following feature extraction, a feature selection is per-
formed using a two-step approach. Initially, the features and
corresponding labels were stored. The feature set, repre-
sented by array X, was standardized to achieve uniform scal-
ing across features. This standardization process was crucial
in avoiding any bias caused by features with disparate mag-
nitudes.

To select relevant features, Lasso regularization is em-
ployed with an alpha value of 0.01. Lasso regression intro-
duces a penalty term that encourages sparsity in the feature
coefficients. The resulting non-zero coefficient features were
then extracted from the data. Furthermore, SelectKBest is
employed, a feature selection method based on chi-square
tests, to rank the features according to their relevance to the
target variable. The top k features with the highest scores
were chosen for the machine learning approaches.

Deep Learning Approach
Deep neural networks, which refers to Artificial Neural Net-
works (ANN) with multiple layers have been considered one

of the most powerful tools for decades as it has gained a lot
of popularity in the literature due to their ability to handle
enormous amounts of data (Albawi, Mohammed, and Al-
Zawi 2017). Convolutional Neural Network (CNN) is con-
sidered one of the most popular deep neural networks. It
has shown excellent performance in various machine learn-
ing problems (Wu 2017). DenseNet is one of many types
of CNN models, that replace the convolution non-linear and
pooling layers with dense blocks and transition layers ex-
cept for the first convolutional layer (Nawaz, Sewissy, and
Soliman 2018). Following the same approach as (Nawaz,
Sewissy, and Soliman 2018), using a transfer learning ap-
proach, the DenseNet architecture was modified to deal with
histopathology images to build a breast cancer multi-class
image classifier.

Transfer learning aims to achieve high performance on
target tasks by using knowledge learned from another sim-
ilar task learned in advance, in other words, knowledge is
transferred to enhance the performance new task, thus sav-
ing time and hardware resources.(Kim et al. 2022).

Following a similar approach as (Nawaz, Sewissy, and
Soliman 2018), the DenseNet model with ImageNet weights
was used as the pre-trained model. However, this experiment
used DenseNet169 and modified the last 10 layers of the
original model to be fine-turned, while preserving the pre-
trained weights of ImageNet on the rest. Four custom dense
blocks were added and three transition layers as (Nawaz,
Sewissy, and Soliman 2018) to classify breast cancer tumors.
Each dense block is implemented with four convolutional
layers and a 3x3 kernel size is used instead of the reference
implementation. Following each dense block is the transi-
tion layer with a reduced kernel size of 1x1 and an average
pooling layer. Finally, a final dense layer is added with the
desired number of classification classes, which was 8 in this
case. Figure 2 displays the modified DenseNet architecture
that was taken as a reference for this implementation

During the training, a list of callbacks is used as they
are useful for performing certain actions at various training
stages. Three callbacks were implemented, EarlyStopping,
ModelCheckpoint, and TensorBoard. EarlyStopping moni-
tors the validation loss and stops the training process if the
loss does not improve for a certain number of epochs (spec-
ified by patience). ModelCheckpoint saves the best model
weights based on the validation loss. And TensorBoard al-
lows model visualization during the training by saving the
logs.

Machine Learning Approach
The concept of machine learning refers to various types
of algorithms that use a dataset to make intelligent predic-
tions (Nichols and Baker 2019). The present work relies on
Deep Learning techniques to extract features from the image
dataset. The objective is to conduct a comparative analysis of
the classification outcomes between Machine Learning and
Deep Learning. This approach uses 3 different algorithms
for the multiple class classification of the dataset: Random
Forest, Support Vector Machines, and K-Nearest Neighbor.

The support vector machine (SVM) is employed due to
its robustness in handling high variable-to-sample ratios and



Figure 2: Modified DenseNet Model displaying the dense
and transition blocks flow as in (Nawaz, Sewissy, and Soli-
man 2018).

a large number of variables. SVMs are capable of effi-
ciently learning complex classification functions since they
employ powerful regularization principles to prevent over-
fitting. The Random Forest algorithm is employed due to
its construction through a bootstrap approach that utilizes
a randomly chosen subset of variables. This approach en-
sures optimal classification performance within the sample

limit. The K-Nearest Neighbors (KNN) algorithm is a non-
parametric method utilized for classification. Its efficacy and
simplicity are widely recognized. (Statnikov and Aliferis
2007)

In this work, a 10-fold cross-validation approach was em-
ployed for each candidate to optimize the three selected
machine learning algorithms. The chosen measure for op-
timization was accuracy. On the other hand, given that this
is a classifier with multiple classes, the one-vs-all approach
is employed to create a binary classifier for each class.

Upon completion of the fitting process, the optimal classi-
fier is preserved for both the training and validation datasets.
The test dataset is utilized to assess the performance of the
machine-learning model. The utilization of ROC curve com-
putation is employed, and identical metrics are utilized in the
deep learning methodology.

Results and Discussion
The code is publicly available at: https://github.com/abdal
rhmanu/magnification-specific-breast-histopathology-ima
ge-classification-using-machine-and-deep-learning. The
model is tested in a magnification-dependent way. The data
was rearranged as explained previously. The magnification
used for this experiment is 40X. Furthermore, each class is
assigned a number as Table 2 shows.

Name of Class Name Assigned
Adenosis Class 0

Ductal carcinoma Class 1
Fibroadenoma Class 2

Lobular Carcinoma Class 3
Mucinous Carcinoma Class 4
Papillary Carcinoma Class 5

Phyllodes tumor Class 6
Tubular Adenoma Class 7

Table 2: Classes’ names for Classification Experiments.

ML Approach results
The Receiver Operating Characteristic (ROC) curve is gen-
erated for individual classes by utilizing the actual labels
and forecasted scores. In order to compute the false posi-
tive rate (FPR), true positive rate (TPR), and thresholds for
each class, it is necessary to transform the authentic labels
from categorical labels into numerical values using a label
encoder. The computation of the area under the receiver op-
erating characteristic (ROC) curve, commonly referred to as
AUC, is performed for every individual class. The outcomes
of the cross-validation fitting for the selected models in this
machine learning methodology are presented in the subse-
quent table, which displays the Area Under the Curve (AUC)
of the OneVsAllClassifier as Table 3.

In addition to the area under the curve (AUC) metric,
an analysis of the receiver operating characteristic (ROC)
curves is conducted for each class across various algorithms.
The outcomes pertaining to the Random Forest model are
depicted in Figure 3. Classes 0, 1, and 4-7 in these findings



ML algorithm AUC
Random Forest 0.52

SVM 0.56
K-Nearest Neighbors 0.48

Table 3: Accuracy result for the Multiple Class Classifier.

exhibit an AUC of 1, implying that the RF model attained a
complete true positive rate, thereby emulating the class pre-
diction. Classes exhibiting an AUC value of less than 1 sug-
gest that the Random Forest (RF) model may have a compar-
atively higher rate of false positives or a lower rate of true
positives, which in turn indicates challenges in the classifi-
cation process.

Figure 3: ROC curve Obtained from Random Forest.

The Receiver Operating Characteristic (ROC) table pre-
sented in Figure 4 indicates that the classification of Class
1 is challenging. On the other hand, the remaining classes
demonstrate similar behavior to that of the RF. The present
findings indicate that the performance of SVM is compara-
tively inferior due to its regularization principles which ef-
fectively mitigate the issue of overfitting that may arise from
data errors.

The results depicted in Figure 5 indicate that the K-
Nearest Neighbors (KNN) algorithm exhibits a high degree
of accuracy in classifying the data. Specifically, a majority
of the classes demonstrate a perfect classification accuracy
of 1, while the remaining classes exhibit near-perfect accu-
racy.

In summary, the AUC values (see Table 3) indicate mod-
erate performance. In contrast, another study (Naji et al.
2021) also reported that SVM achieved higher efficiency
(97.2%), precision (97.5%), and AUC (96.6%) on the Wis-
consin Breast Cancer Diagnostic dataset (WBCD), outper-
forming other algorithms. The authors concluded that SVM
demonstrates the best performance in terms of accuracy and
precision.

The features fed to the machine-learning algorithms could
have been further enhanced using more feature engineering
techniques. For instance, Karthiga & Narasimhan (2018) re-
ported higher accuracy values for the SVM classifiers, rang-

Figure 4: ROC curve Obtained from Support Vector Ma-
chines.

Figure 5: ROC curve Obtained from K-Nearest Neighbor.

ing from 91.3% to 93.3% suggesting better performance
in predicting breast cancer using the wavelet-based entropy
features and SVM classifiers.

DL Approach results
In this study, DenseNet transfer learning is used to perform
a classification task. The evaluation of the model on the test
dataset yielded a test loss value of 0.0168, which indicates
the average discrepancy between the predicted labels and the
actual labels in the test dataset. Furthermore, the test accu-
racy value of 0.7150 means the proportion of correctly pre-
dicted labels in the test dataset. Overall, the model is cor-
rectly classifying the samples 71% of the time.

In addition to the test accuracy and loss, the performance
of the DenseNet transfer learning algorithm using ROC
curves for each classification class is also analyzed(see Fig.
6). The ROC curve is a graphical representation that il-
lustrates the trade-off between the true positive rate (TPR)
and the false positive rate (FPR) for different classification
thresholds.

The class with an AUC of 0.98, like Class 0 and Class 7
in these results, indicates that the DL approach achieved a
high true positive rate while maintaining a low false positive



Figure 6: ROC curve Obtained from DL DenseNet Classifier

rate, resulting in accurate predictions for that class. On the
other hand, a class with a lower AUC, such as Class 1 with
an AUC of 0.92, suggests that the DenseNet may have a rel-
atively higher false positive rate or lower true positive rate,
indicating some difficulty in correctly classifying instances
of that class.

In this approach, the classification is done with the images
at a magnification of 40X. These results show AUC values
ranging from 0.92 to 0.98 for different classes. In contrast,
(Yari, Nguyen, and Nguyen 2020) performed magnification-
dependent binary and multiclass classification at various
magnifications, including 40X, 100X, 200X, and 400X.
They achieved high accuracies ranging from 97.40% to
100% for binary and multiclass classification. Furthermore,
(Yari, Nguyen, and Nguyen 2020) in a magnification-
independent experiment, they achieved high accuracies of
99.50% and 97.72% for binary and multiclass classification,
respectively. It implies that their model’s performance re-
mains consistent across different magnifications, indicating
robustness and generalizability.

Regarding the use of DenseNet, in (Vulli et al. 2022), au-
thors compared the performance of the model before and af-
ter fine-tuning by analyzing the ROC curves. The authors
observed that the model covered 83% of the area under
the ROC curve (AUC) before fine-tuning. However, after
fine-tuning, the performance of the model significantly im-
proved, with it covering 99% of the area under the ROC
curve. This implies that the model’s performance became
optimal, as it achieved a high AUC value. However, the au-
thors used a filtered version of the pcam dataset that consists
of H&E-stained images of sentinel lymph node zones. The
pcam dataset also applies under-sampling to expand the field
of view. Notably, the pcam dataset focuses on metastasis pre-
diction, while BreakHis provides a broader classification of
various types of tumors.

Furthermore, while only transfer learning is used using
DenseNet, in another study (Liew, Hameed, and Clos 2021),
authors proposed a combination of deep learning with the

pre-trained DenseNet201 model and extreme gradient boost-
ing (XGBoost) for classification. They also incorporate pre-
processing techniques such as data augmentation and stain
normalization. In contrast to this experiment, the focal loss
function is used to address the class imbalance issue. How-
ever, Liew et al. (2021) claim to improve upon existing work
using the BreaKHis dataset by achieving a higher accuracy
of 97% for both binary and multi-class classification tasks.
This suggests that the machine learning algorithm together
with the Deep Learning algorithms algorithm provides a
powerful prediction capability for breast cancer image clas-
sification.

Conclusions and Future work
This article explores the use of machine intelligence and
transfer learning to improve the accuracy, efficiency, and
generalization ability of breast cancer classification models
using histopathological images.

The study utilizes the BreaKHis dataset, which is a com-
prehensive collection of biopsy images depicting both be-
nign and malignant breast tumors.

The article uses data splitting, data augmentation, feature
extraction, and selection, as well as the implementation of
deep learning and machine learning approaches for breast
cancer classification.

The deep learning approach employs a modified
DenseNet model, which is pre-trained on the ImageNet
dataset and fine-tuned for breast cancer classification. The
model architecture includes custom dense blocks and transi-
tion layers for multi-class classification.

The machine learning approach compares the perfor-
mance of three algorithms: Random Forest, Support Vec-
tor Machines (SVM), and K-Nearest Neighbors (KNN) for
multi-class classification of breast cancer. The models are
optimized using a 10-fold cross-validation approach.

The results and discussion section of the article presents
the performance metrics of the machine learning models.
The Area Under the Curve (AUC) is computed for each
class, and the values obtained for the Random Forest, SVM,
and KNN algorithms are provided

The ML approach achieved moderate performance with
AUC values ranging from 0.48 to 0.56, while the DL ap-
proach using DenseNet transfer learning achieved an over-
all test accuracy of 0.7150. Additionally, the DL approach
showed varying AUC values for different classes, ranging
from 0.92 to 0.98.

Comparing the results to other studies, it appears that the
ML and DL approaches in this study may have achieved
lower performance metrics compared to some previous
works. For example, a study on the Wisconsin Breast Can-
cer Diagnostic dataset (WBCD) reported higher efficiency,
precision, and AUC for SVM. Another study using wavelet-
based entropy features and SVM classifiers achieved higher
accuracy values ranging from 91.3% to 93.3%. Similarly,
other studies on the pcam and BreaKHis datasets reported
higher accuracies for binary and multi-class classification
tasks using different DL models and techniques.

These comparisons suggest that there is room for im-
provement in the performance of the ML and DL approaches



used in this study. Further experimentation with feature en-
gineering, hyperparameter tuning, different DL models, and
additional preprocessing techniques could potentially en-
hance the accuracy and performance of the classification
system for breast cancer detection and diagnosis.
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Reátegui, E. 2019. Extracellular vesicles as mediators of
in vitro neutrophil swarming on a large-scale microparticle
array. Lab on a Chip 19(17):2874–2884.
Wu, J. 2017. Introduction to convolutional neural networks.
National Key Lab for Novel Software Technology. Nanjing
University. China 5(23):495.
Yari, Y.; Nguyen, T. V.; and Nguyen, H. T. 2020. Deep
learning applied for histological diagnosis of breast cancer.
IEEE Access 8:162432–162448.


