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Abstract—In this project, we employed two segmentation
approaches for three main brain tissues—cerebrospinal fluid
(CSF), gray matter (GM), and white matter (WM)—using the
IBSR 18 dataset. The first approach involved a multi-atlas
technique, while the second utilized deep learning, specifically
the nnUnet neural network. Following extensive experiments, the
deep learning approach demonstrated superior performance with
Dice scores of 0.92 for CSF, 0.88 for GM, and 0.94 for WM. These
impressive results highlight the effectiveness of the nnUnet neural
network in accurately segmenting brain tissues.

Index Terms—Brain Segmentation Multi-Atlas nnUnet

I. INTRODUCTION

Medical image segmentation is a critical aspect of modern
diagnostic and treatment planning in neuroimaging. Among
the diverse methodologies employed for the segmentation of
brain tissues, we can find traditional multi-atlas techniques and
state-of-the-art deep learning models.

Atlas-based segmentation is a commonly used technique to
segment image data. In atlas-based segmentation, an intensity
template is registered non-rigidly to a target image and the
resulting transformation is used to propagate the tissue class
or anatomical structure labels of the template into the space of
the target image. Multi-atlas aproach is when several atlases
from different subjects are registered to target data. The label
that the majority of all warped labels predict for each voxel
is used for the final segmentation of the target image.

The nnU-Net (no-new-Net) segmentation method represents
a cutting-edge approach in the field of medical image segmen-
tation, particularly for brain tissue analysis [?]. no-new-Net
(nnU-Net), a segmentation method that includes a formalism
for automatic adaptation to new datasets. Based on an auto-
mated analysis of the dataset, nnU-Net automatically designs
and executes a network training pipeline. Being wrapped
around the standard U-Net architecture. without any manual
fine-tuning, the method achieves state-of-the-art performance
on several well-known medical segmentation benchmarks. [?]

II. DATASET

The MRI dataset used in this project, IBSR 18, consisted
of 18 volumes, which were divided into training, validation,
and testing sets.

Dataset Split Number of Images

Training 10
Validation 5

Test 3

TABLE I: Dataset Split and Number of Images

The images provided had different spatial resolutions and
intensity distributions, with varying pixel sizes. The dataset
encompassed three distinct pixel sizes, as detailed in Table II.

The diversity in intensity distributions among the images
was taken into consideration, as it holds significance for the
segmentation process.

Number Pixel Size

1 0.9375, 1.5, 0.9375
2 1.0, 1.5, 1.0
3 0.8371, 1.5, 0.8371

TABLE II: Different Pixel Sizes

III. PREPROCESSING

All images underwent skull-stripping, rendering this step
unnecessary. This preprocessing pipeline was only necessary
for the second aproach MultiAtlas.

A. Bias-Field Correction

The initial and essential preprocessing
step involved bias-field correction using the
N4BiasFieldCorrectionImageFilter() method
from SimpleITK. This filter effectively corrected intensity
inhomogeneities, providing enhanced images. The correction
process was applied uniformly to all images in the dataset.

B. Normalization

Given the diverse intensity distributions across im-
ages and the distinct characteristics of the target im-
age, a normalization step was neccesary. We employed
the HistogramMatchingImageFilter() method from
SimpleITK to match each image’s histogram to a specific
target.



In our experiments, we performed two normalization ap-
proaches. Initially, we chose one training image (CASE 04)
as the target, aligning all other images with its distribution.
Additionally, we explored a more intricate method using
individual testing images as targets. However, this approach
required separate preprocessing for each test image, making
the algorithm more complex.

IV. MULTI-ATLAS SEGMENTATION

A. Registration and Label Propagation

For us to create a multi-atlas approach, we had to register
the intensity images to a fixed reference frame in order to fuse
the labels and create a deterministic segmentation for the three
tissues. To do so, we followed two registration strategies.
The first registration strategy was to register all of the training
intensity volumes to all of the test intensity volumes (we
use the validation data to evaluate as we were given its
labels), and then fuse the atlases using the different tech-
niques that will be discussed in the next sub-section IV-B of
label fusion. The second registration strategy was to register
the volumes that have similar voxel sizes in millimeters
together, making less number of registration to each test
volume space. In the given dataset, there were three unique
voxel sizes, which are (0.9375, 1.5, 0.9375), (1.0, 1.5, 1.0) and
(0.8370536, 1.5, 0.8370536). Each train volume from each
voxel size was registered to the test of its similar size for
this strategy experiment.
For Elastix and Transformix, we used version
elastix windows32 v4.2 and Par0010 affine and b-
spline parameter files. We also did an additional step
before propagating the labels, which is to change the
FinalBSplineInterpolationOrder value inside the
transformation parameters file generated by Elastix from 3
to 0. This is to ensure that the labels volumes has integer
intensity values and not floats.

B. Label Fusion

The label fusion is considered the most important technique
to generate hard segmentation in a multi-atlas approach, and
it is where most of the improvements on the baseline without
any pre-processing can be done. In our implementation, we
developed three label fusion techniques to fuse all the labels
generated from the different registration strategies. Those tech-
niques are: Majority Voting, Weighted Voting, and STAPLE.

1) Majority Voting: Majority voting is implemented in a
way that all the propagated labels volumes are used in a
majority voting technique, where based on the majority of the
labels of each pixel, the final label will be determined on that
majority for the output intensity segmentation.

2) Weighted Voting: Weighted voting is quite similar to
majority voting, where the main difference is that we give
a weight to each label based on a metric. We used a Mutual
Information (MI) similarity metric, where we compared the
registered intensity to the test intensity, and created weights
for each label that is multiplied by that label. As the weight is
a float, and when multiplied by the propagated label volume

it won’t have any longer integer labels. We obtained the mean
for each class label for all label volumes, and computed the
argmax among all tissue classes as well as the background.

3) STAPLE: To implement STAPLE, we used STAPLE
from SimpleITK library that takes a list of binary masks for
a single label class, and creates a probabilistic segmentation
as mentioned in the documentation. Thus, we created a list for
each class including the background, fused using the built-in
STAPLE and then threshold-ed using a threshold of 0.6 to
create a final hard segmentation of the brain volume.

V. DEEP LEARNING SEGMENTATION

In this project we implemented an application of the nnUNet
framework, with a customize trainer to achieve the IBSR18
data set segmentation. The nnUNET , was selected due to
it’s self-configuring capabilities in medical image segmen-
tation, automated configuration, adaptability and robustness.
nnUNet intelligently adapts the UNet architecture, determin-
ing the optimal depth, width, number of convolutional filters,
and pooling operations for each specific dataset. This adapt-
ability was vital in selecting the model to the unique aspects of
brain MRI images in the IBSR18 dataset.The implementation
used the provide documentation from the Division of Medical
Image Computing, German Cancer Research Center (DKFZ).
[1]

A. Prepocessing

In this implementation we used the nnUNET prepossess-
ing approach, since it is design to be a benchmark method to
compared your deep learning segmentations. The steps used
to achieve the preprocessing consists. The used of resampling
since the voxel spacing in the dataset is not consisting. In
the nnUNET a pipeline of this methods is used to achieve
the prepocessing; use of the median spacing to determine the
targeting spacing to resample, the used of third order spline
interpolation to preserve the image quality, then image are
padded or cropped to a fixed size and at last a correction of
the intensity.

B. Training and Validation

In the training a custom trainer with a less epochs was
chosen since the normal model is trained until the 1000 epochs
are achieved. The used of the nnUNET with our alterations can
be seen in the project GitHub. [2] In the training we opted to
used the 5-fold cross-validation too ensured a comprehensive
learning and maximized the model’s generalization. The steps
that are follow in the nnUNET from DKFZ [1] can be
summarized as follow:

1) Model Configuration: nnUNet automatically config-
ures its network architecture and hyperparameters based on
the dataset’s characteristics, like image size, spacing, and
modality.

2) Training Procedure: The network use the random sam-
pled patches from the full-resolution image and a suitable loss
function is selected normally a combination of Dice loss and
cross-entropy loss.



3) During training: Periodic validation is performed on a
separate set of data to monitor the model’s performance and
avoid overfitting. nnUNet might adjust its strategies based on
the observed performance, such as changing the patch size or
sampling strategy.

4) After training: nnUNet often employs ensembling and
test-time augmentation to improve segmentation accuracy on
the test data. The best-performing models during validation
are chosen for the final segmentation task.

C. Post processing

The nnUNet includes a prepossessing steps that help with
the data cleaning and obtaining higher results when evaluating
the model. This steps include:

1) Thresholding and Cleaning: Applying a threshold to
convert the network’s probabilistic output into a binary seg-
mentation, followed by the removal of small, isolated segments
that are likely to be noise or false positives.

2) Connected Component Analysis: This involves identify-
ing and possibly discarding small connected components based
on predefined criteria, to enhance the accuracy and relevance
of the segmentation.

3) Region of Interest (ROI) Adjustment: Adjusting the
segmentation to fit within the expected ROI, which can in-
volve cropping or expanding the segmented regions based on
anatomical knowledge or predefined constraints.

4) Mapping Back to Original Space: If the data was
resampled during preprocessing, the segmented images are
resampled back to their original space to align with the original
imaging data.

VI. RESULTS AND DISCUSSION

A. Preprocessing

Given the diverse histogram distributions across all images,
a crucial step in standardization involved selecting a singular
reference. Volume 4 from the training set was strategically
chosen as our target histogram. Figure 3 illustrates the results
of the preprocessing step, focusing on histogram matching as
a key technique. In this figure volume N° 14 it is matched to
the target histogram.

B. Multi-Atlas Results

In this subsection, we present quantitative and qualitative
results of the segmentation performance achieved by our
Multi-Atlas approach.

1) Quantitative Results: In this section, we present the seg-
mentation results obtained through various fusion techniques
in the context of multi-atlas segmentation. In the case of the
weighted fusion, Table III, presented very good results accross
all the patients, with a mean values avobe 80, for this case the
most difficult tissue to segmenet was CSF. The best Dice score
was for GM class, with values above .86.

The quantitative results for the majority voting, are pre-
sented in Table IV. For this tecnique we values for GM around
.87 in patient IBSR 13. In the case of CSF the values are still

(a) Target Histogram

(b) Histogram before matching

(c) Histogram after matching

(d) Example of histogram matching

Volume WM GM CSF Mean

IBSR 11 0.794 0.822 0.785 0.801
IBSR 12 0.799 0.822 0.790 0.803
IBSR 13 0.783 0.866 0.770 0.806
IBSR 14 0.807 0.865 0.815 0.830
IBSR 17 0.783 0.869 0.865 0.838

TABLE III: Weighted voting fusion

Volume WM GM CSF Mean

IBSR 11 0.787 0.826 0.775 0.796
IBSR 12 0.801 0.830 0.815 0.815
IBSR 13 0.787 0.870 0.765 0.807
IBSR 14 0.805 0.866 0.809 0.827
IBSR 17 0.782 0.869 0.876 0.842

TABLE IV: Majority voting fusion

the lower results. The maximum mean for the three classes
was .842.

For the staple fusion technique, as presented in Table V,
the mean Dice score was below 0.80, indicating comparatively
lower overall segmentation performance. This technique faced
challenges, especially in CSF segmentation, resulting in the



lowest scores among the three tissue classes.

Volume WM GM CSF Mean

IBSR 11 0.802 0.769 0.757 0.776
IBSR 12 0.755 0.740 0.684 0.726
IBSR 13 0.710 0.782 0.729 0.740
IBSR 14 0.778 0.802 0.780 0.787
IBSR 17 0.738 0.798 0.771 0.769

TABLE V: Staple fusion

To facilitate a comprehensive comparison of different fusion
techniques, we present the mean Dice scores for each method
in Table VI. In this case, majority voting shows better results
among the others with a mean dice score of 0.8174, closely
followed by weighted voting fusion with 0.8158.

Staple fusion obtains the lowest mean dice score at 0.7597,
primarily influenced by its performance in CSF segmentation,
where it scores 0.7442. Notably, majority voting excels in GM
and CSF, while weighted voting fusion outperforms in WM.

Fusion Technique WM GM CSF Mean

Staple fusion 0.7565 0.7785 0.7442 0.7597
Majority voting fusion 0.7923 0.8521 0.8078 0.8174
Weighted voting fusion 0.7933 0.8489 0.8052 0.8158

TABLE VI: Dice Scores for Fusion Techniques

2) Qualitative Results: In this subsection, we present qual-
itative results showcasing the segmentation outcomes using
different fusion techniques compared to the ground truth.
Figure 2 provides visual representations of the segmentation
results for a validation volume across axial, coronal, and
sagital views. In this figure it can be shown that the CSF class
is the more challenging to segment. For majority voting, 2 a),
we can see there are some difficulties specially in the border of
the bran when training to find fine borders or curves. Also for
majority voting it was difficult to differentiate in the borders of
GM and GM and is labeling as GM. For staple fusion, 2 b), the
segmentation tend to label as WM in the borders between GM
and WM. In general the three techniques had difficulties in the
border of the brain, covering areas that do not correspond to
matter. For weighted voting, 2 c), this one tends to label as
GM in the areas between GM and WM. Additionally, CSF
was challenging to segment comparing to GT , Fig 2 d),

C. Deep Learning Results

In this subsection, we present quantitative and qualitative
results of the segmentation performance achieved by our deep
learning approach.

1) Quantitative Results: For the deep learning approach
using the nnUnet, the obtained class-specific Dice scores and
the mean Dice score for the validation set are summarized in
Table VII. The mean Dice score provides an overall assessment
of the model’s performance across all classes, with a value of
0.9293 indicating a high level of segmentation accuracy for
the validation set.

(a) Majority Voting

(b) Staple Voting

(c) Weighted voting

(d) GT

Fig. 2: Example Segmentation Result vs Ground Truth in a
validation volume

WM GM CSF Mean

0.8998 0.9485 0.9396 0.9293

TABLE VII: Class Dice Scores and mean for Validation set

2) Quantitative Results: Figure 3 showcases examples of
segmentation results for three different volumes from the
testing set. Each row corresponds to a different test volume
(1, 2, and 3), and each column represents a distinct anatomical
view (axial, coronal, and sagital).

Figure 4 illustrates the segmentation results compared to the
ground truth for two validation volumes (Volume N°11 and
Volume N°12). Each row corresponds to a specific volume,
with the left column displaying axial views, the center col-
umn showing coronal views, and the right column presenting
sagittal views. As it is shown, the segmentation result is very
similar to the ground truth, only with few differences. For the



(a) Test Volume N°1

(b) Test Volume N°2

(c) Test Volume N°3

Fig. 3: Example of segmentation result using the testing set:
Volume N°1,2 & 3

three classes the result is very good, specially in the most
complicated zones, specially with intricate details, such as
borders and class separation. Despite minor differences, the
segmented areas remain consistent with the ground truth, even
in challenging regions. The sagittal view for CSF exemplifies
the model’s capability to segment small portions.

D. Multi-Atlas vs Deep Learning

The nnUnet method provided superior segmentation accu-
racy, especially in complex brain regions. However, it required
significantly more computational resources compared to the
multi-atlas approach, which offered faster processing times
but with slightly lower accuracy. One of the major limitations
of the multi-atlas method is its sensitivity to the anatomical
variability among patients. On the other hand, the nnUnet’s
performance is highly dependent on the volume and quality of
training data. In scenarios where computational resources are
limited, the multi-atlas method may be more feasible, whereas
nnUnet is preferable in settings where accuracy is paramount
and resources are abundant.

CONCLUSION

This project demonstrates the effectiveness of both the
multi-atlas and nnUnet methods in brain tissue segmentation
using the IBSR 18 dataset. With three different techniques for
multi-atlas segmentation (Majority voting, Staple voting, and

(a) Validation Volume N°11

(b) GT Validation Volume N°11

(c) Validation Volume N°12

(d) GT Validation Volume N°12

Fig. 4: Example Segmentation Result vs Ground Truth in a
validation volume

Weighted voting), we achieved a mean Dice score of 0.81 in
the validation set, indicative of robust segmentation accuracy.

In the second approach, deep learning, we employed the
nnUnet model, which proved to be particularly effective for
brain segmentation. The implementation of the nnUnet model
yielded promising results, obtaining a mean Dice score of 0.92
on the validation set.

REFERENCES

[1] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein,
“nnu-net: a self-configuring method for deep learning-based biomedical
image segmentation,” Nature Methods, pp. 1–9, 2020.

[2] A. Habib, E. Ulin, and C. Colin, “Ibsr18-brain-tissue-segmentation:
Brain tissue (wm, gm, csf) segmentation using both multi-atlas and
nnunet approaches,” https://github.com/abdel-habib/IBSR18-brain-tissue-
segmentation, 2020.


