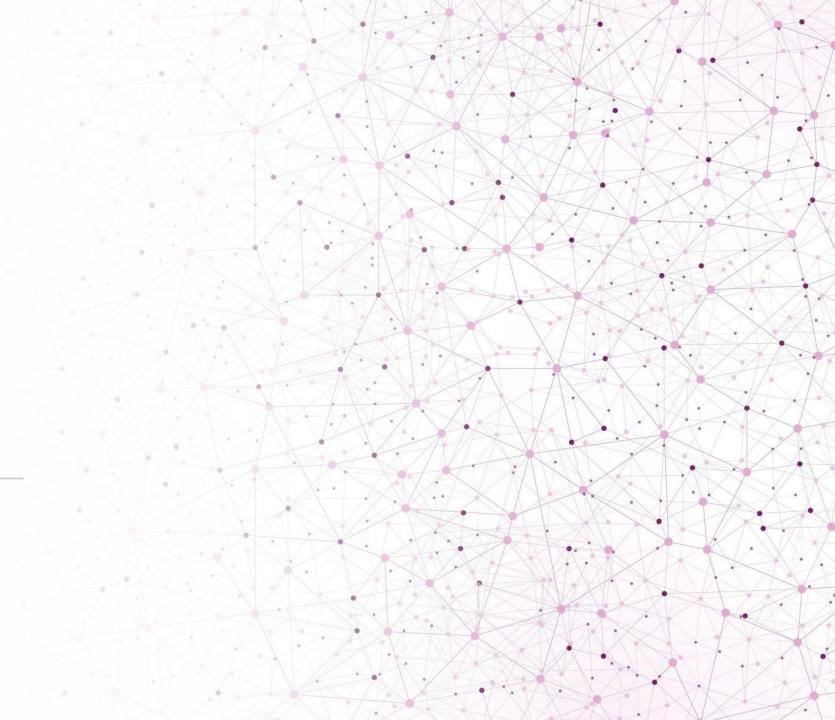
Deep Learning CAD Project Defense

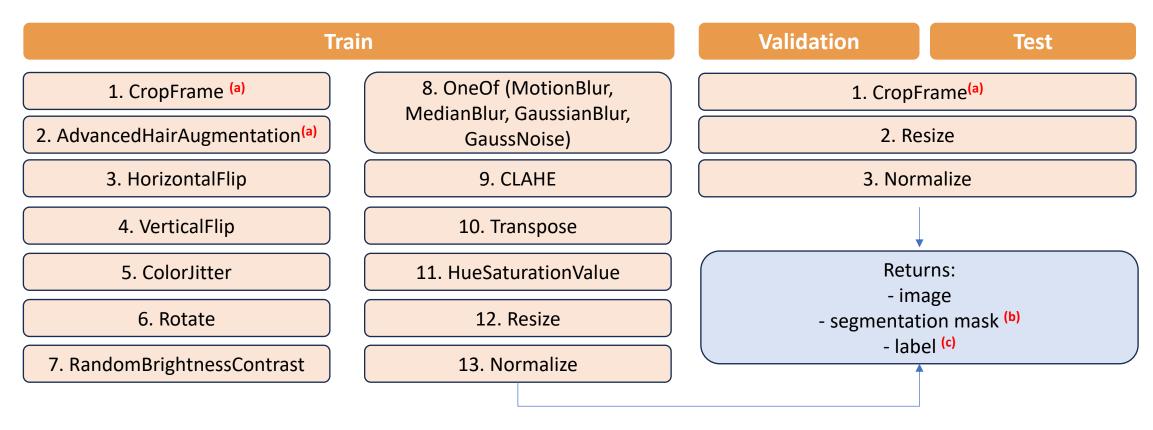
Abdelrahman HABIB



Outline

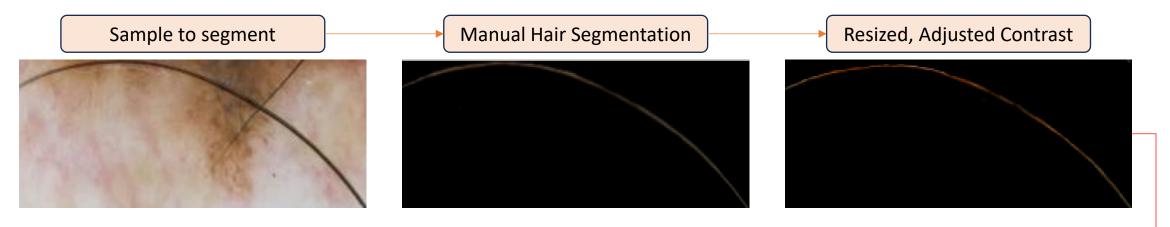
- 1. Augmentation & Pre-processing
 - a. General augmentation/pre-processing
 - b. Hair augmentation (segmentation + augmentation)
- 2. Segmentation Masks
- 3. Architectures
 - a. Base Architecture with visual attention blocks
 - b. Ensemble 5-folds Architecture
- 4. Configurations (Experiments Controllers)
- 5. Results & Discussion
- 6. Grad-CAM Visualization
- 7. Conclusion

[1/7] Augmentation & Pre-processing (1/3)



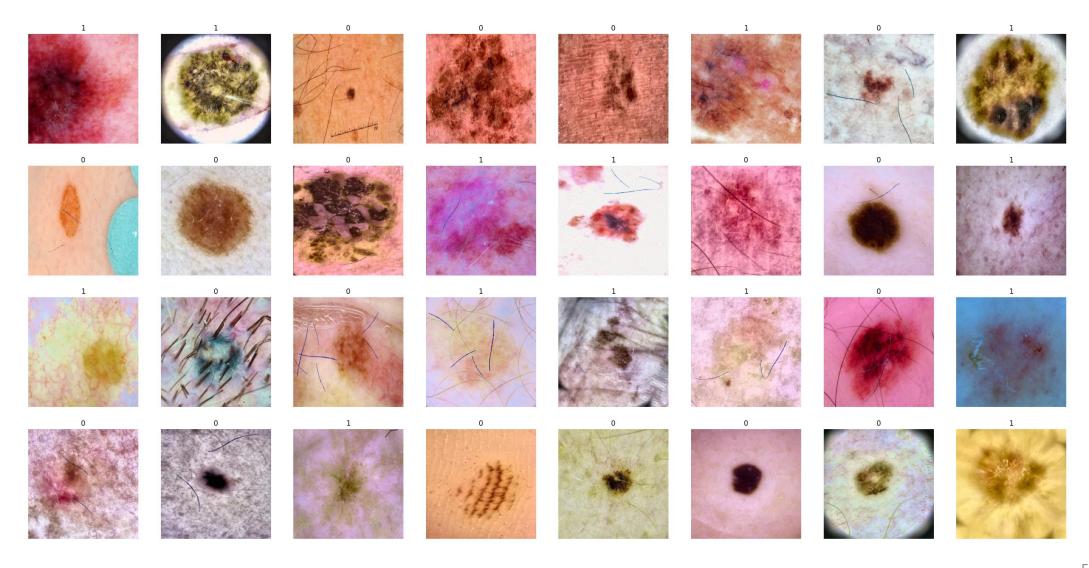
- (a) Custom pre-processing function added to the augmentation transformer with probability (p), (1. p = 100%, 2. p = 50%).
- (b) Depends on the experiment, we return the mask or None.
- (c) Random labels for test as we don't use it (labels are generally based on the filename (class) and index.

[1/7] Augmentation & Pre-processing – Hair Augmentation (2/3)

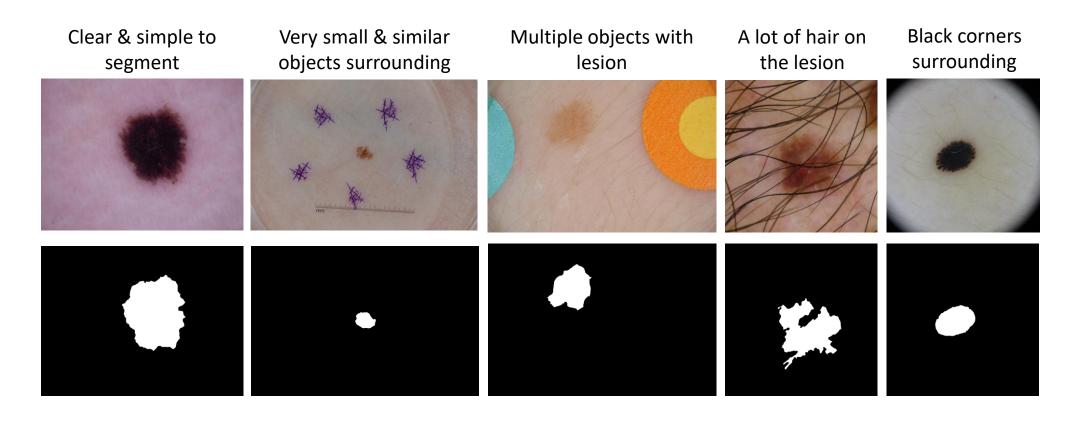


Segmented 5 hair samples from different lesions. The resize and contrast/intensity adjustment is to ensure that the augmented hair is small & dark. Hair is augmented with random rotation, flip, sizes, and maximum 5 new hairs in each image [0 to 5].

[1/7] Augmentation & Pre-processing (Results) (3/3)



[2/7] Skin Lesion Segmentation (1/1) (*)



^{*} Purely image processing! Detailed methodology can be found in the appendix slides, as this is an optional step in the project (yet improved the results).

[3/7] Architectures (Base/Single Model) (1/2)

Uses visual attention blocks, concatenates its output features to base model feature vector, then into classifier layer.

Model is trained from scratch! Loaded pre-trained weights and initialized the classifier and both attention blocks using 'kaiming normal'.

Same base architecture for binary and multi-class problem.

Outputs: features (that we combine) + attention masks (that we use with our segmentation in the loss term)

The authors used a single model and claimed to be the state-of-the-art with a single model, reaching auc = 88% with masks. This model can work with/without masks. Can we do better?

Yan, Y., Kawahara, J., & Hamarneh, G. (2019). Melanoma recognition via visual attention. In Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26 (pp. 793-804). Springer International Publishing.

[3/7] Architectures (Ensemble) (2/2)

Let's call the entire model as VGG16_BN_Attention.

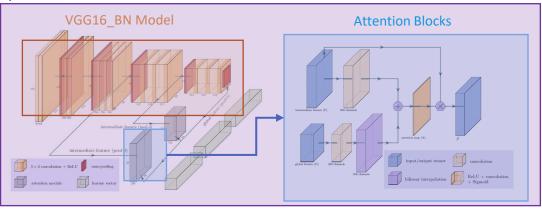
Our approach is to combine both train and valid splits, the split into k-folds using **StratifiedKFold**; k=5.

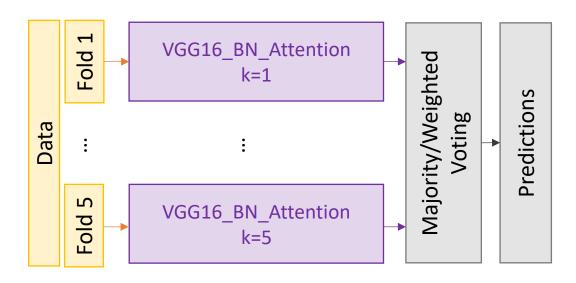
Train k-Models, on every split. **This is one way to handle imbalance of challenge 2!** Combine using majority voting.

More robust results, as the valid split is always balanced, more data to train.

Can work with/without masks; will be discussed later in the configuration slides.

VGG16_BN_Attention





[4/7] Configurations

	Challenge 1	Challenge 2
Epochs	50 (EarlyStopping stops with patience = 5)	
Learning Rates	0.0001 & 0.00001 (best results – avoided overfitting)	
Experiments Controllers	 ClassifierExperiment.py (Base 1 Model / No Masks Used) ClassifierExperimentCV.py (Base ensemble Models / No Mask Used) ClassifierSegExperiment.py (Base 1 Model / Masks Used) ClassifierSegExperimentCV.py (Base ensemble Models / Masks Used) 	
Loss (No Mask, Experiments 1, 2)	L _{WCE} (Weighted Cross Entropy)	$L_{FL} = FL(p_t) = -\alpha(1 - p_t)^{\gamma} \log(p_t)^*$ (Multi-class focal loss)
Loss (w/ Mask, Experiments 3, 4)	Challenge 1: $L = L_{WCE} + \lambda_1 Dice(SegMask, AttMask1) + \lambda_2 Dice(SegMask, AttMask2)$ $L = L_{FL} + \lambda_1 Dice(SegMask, AttMask1) + \lambda_2 Dice(SegMask, AttMask2)$ $\lambda_1 = 0.001$ $\lambda_2 = 0.01$ $AttMask = Attention Mask$ $SegMask = Segmentation Mask$ $SegMask = Segmentation Mask$	

^{*} Multi-class focal loss is initialized with weighted CE, making it handle class imbalance for challenge 2.

^{*} The only difference between attention mask 1 and 2 are the sizes (different scale factor used).

[5/7] Results and Discussion – Challenge 1 $_{(1/4)}$

Single (Base) model results, trained on training split only.

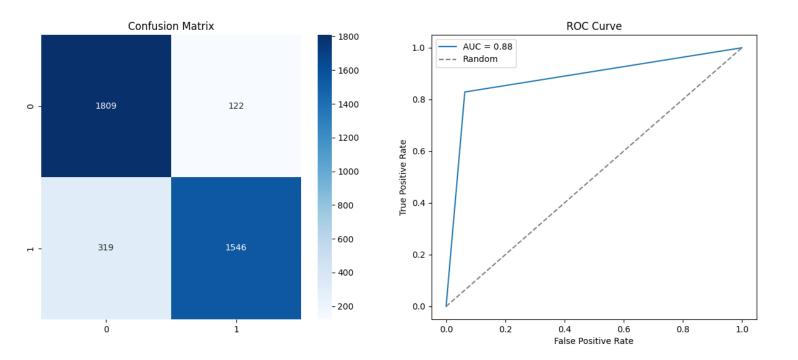
Config: Preprocessing + (Hair + overall) Augmentation + Masks.

Accuracy: 88.3825

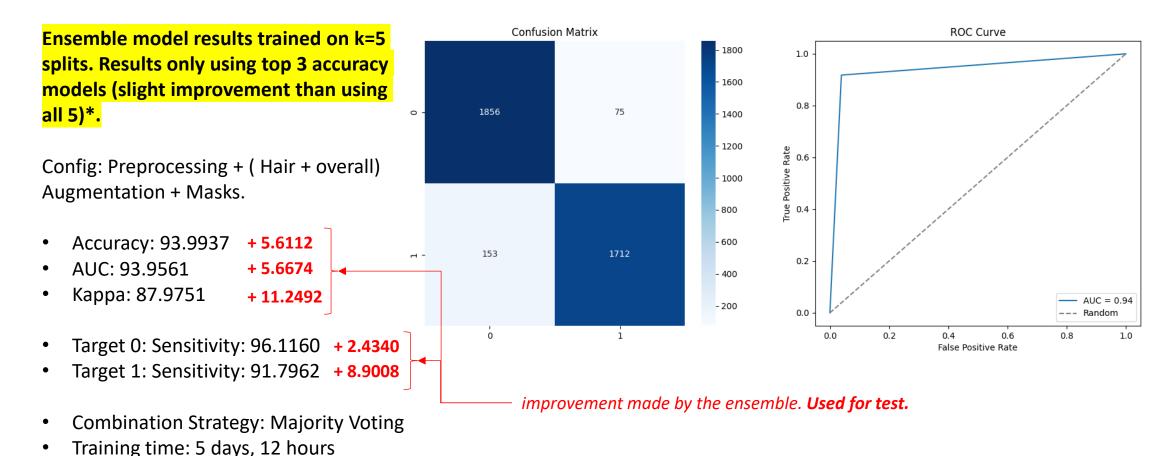
• AUC: 88.2887

• Kappa: 76.7159

Target 0: Sensitivity: 93.6820Target 1: Sensitivity: 82.8954



[5/7] Results and Discussion – Challenge 1 (2/4)



^{*} Results obtained from all 5 models on the validation can be found in the appendix.

[5/7] Results and Discussion – Challenge 2 (3/4)

Single (Base) model results, trained on training split only.

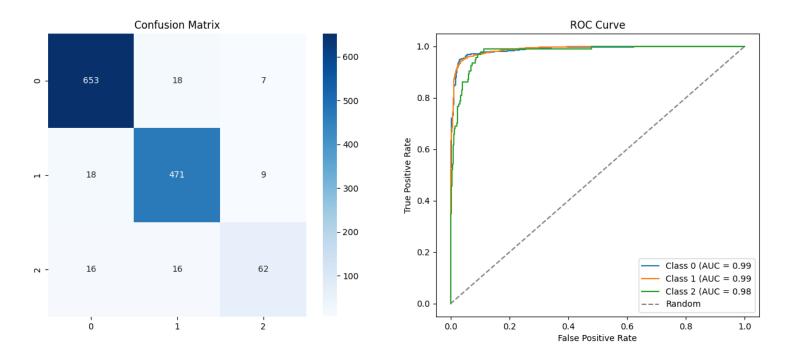
Config: Preprocessing + (Hair + overall)
Augmentation + Masks.

Accuracy: 93.3858

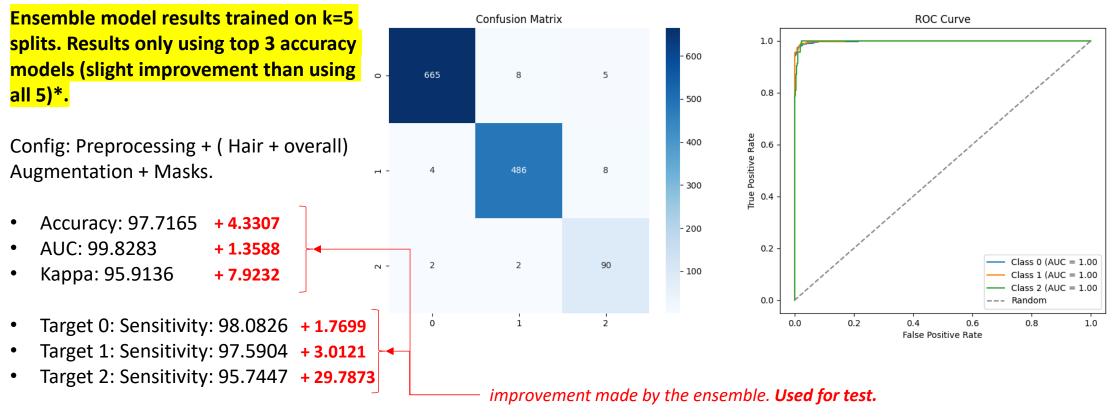
AUC: 98.4695Kappa: 87.9904

Target 0: Sensitivity: 96.3127Target 1: Sensitivity: 94.5783

• Target 2: Sensitivity: 65.9574



[5/7] Results and Discussion – Challenge 2 (4/4)

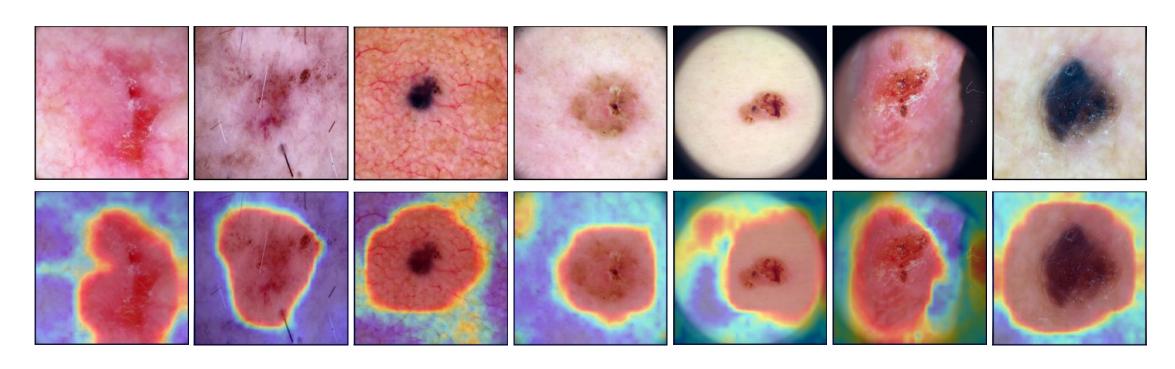


Combination Strategy: Majority Voting

Training time: 3 days, 9 hours

^{*} Results obtained from all 5 models on the validation can be found in the appendix.

[6/7] Grad-CAM Visualization



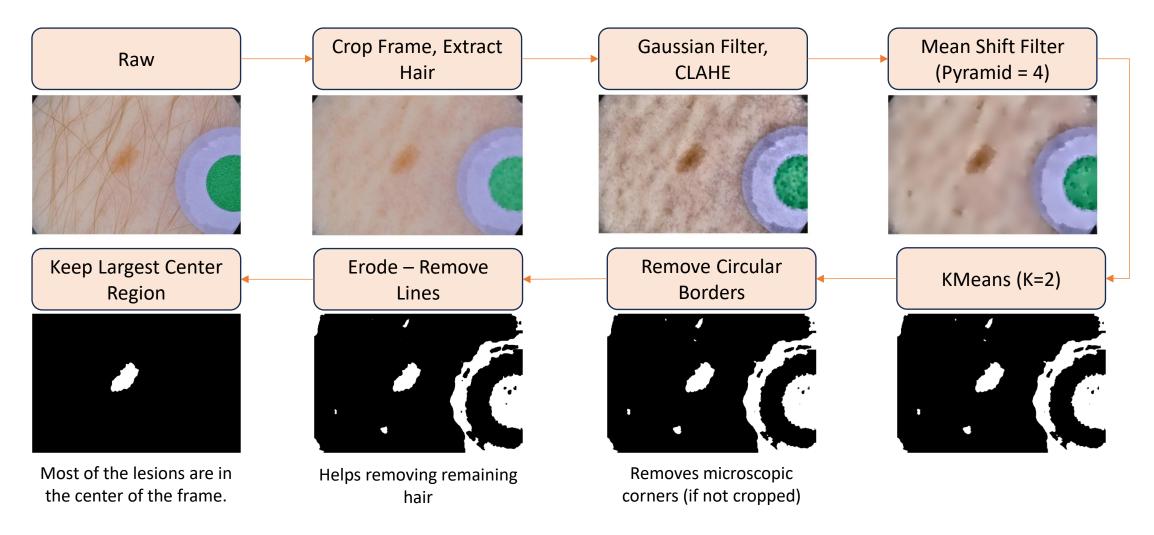
Model Fold = 3, Challenge = 2, Split = Validation, Attention Map = 1 (pooling layer 3)

[7/7] Conclusion

Ensemble approach improves the results significantly, given the same (best) model is trained on different splits of the
dataset.
Useful approaches to handle class imbalance:
☐ StratifiedKFold (with ensemble).
☐ Multi-class focal loss.
☐ Augmentation.
Visual attention blocks + segmentation masks improved slightly the results, by contributing to the training loss.
Augmenting the hair slightly increased the results, making the hair challenge not focused on a specific group of images
and avoiding inpainting all the dataset.

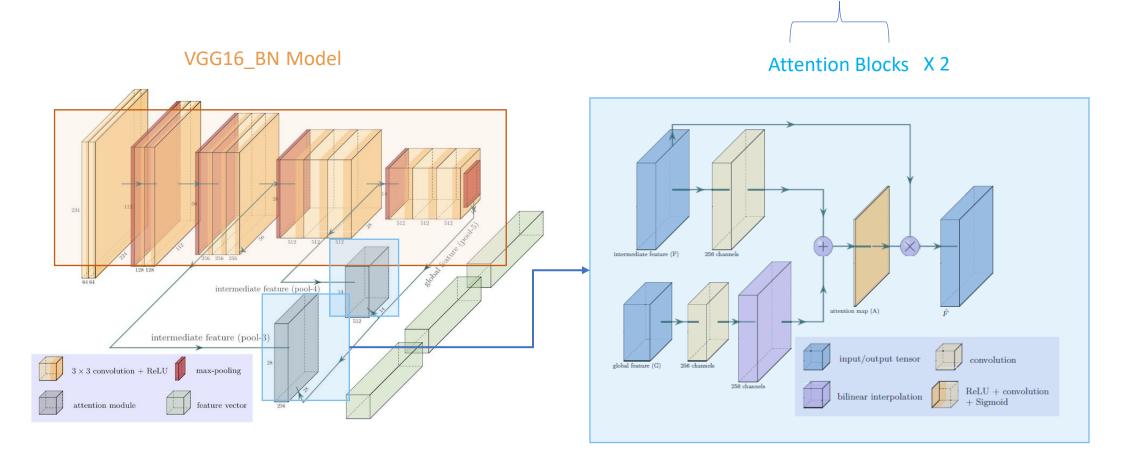
Skin Hair Dataset (Drive Download): https://drive.google.com/drive/u/1/folders/1eNltv3y3yea7wx6mPUag8VvydgJss_mb
Code (GitHub Repository): https://github.com/abdel-habib/ISIC2019-skin-lesion-classification-segmentation

[Appendix] Skin Lesion Segmentation



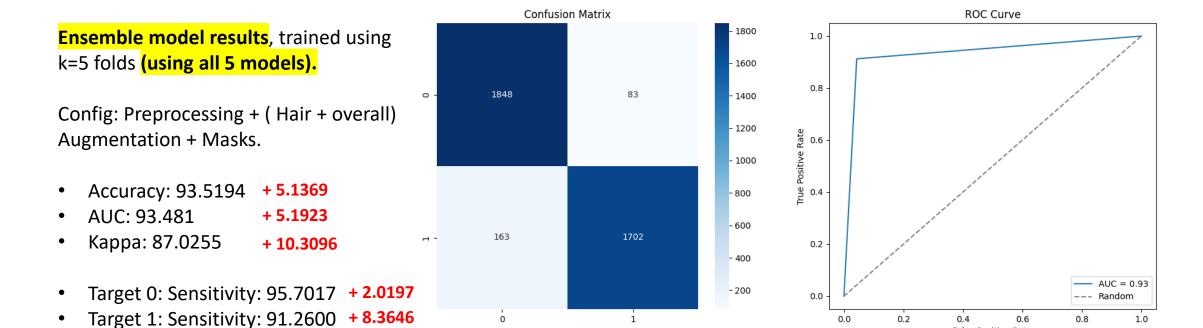
[Appendix] Architectures (Base)

Outputs: features (that we combine) + attention masks (that we use with our segmentation in the loss term)



Yan, Y., Kawahara, J., & Hamarneh, G. (2019). Melanoma recognition via visual attention. In Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26 (pp. 793-804). Springer International Publishing.

[Appendix] Results and Discussion – Challenge 1



Combination Strategy: Majority Voting

Training time: 5 days, 12 hours

+ number – improvement made by the ensemble.

False Positive Rate

[Appendix] Results and Discussion – Challenge 2

Ensemble model results, trained using k=5 folds (using all 5 models).

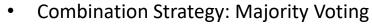
Config: Preprocessing + (Hair + overall) Augmentation + Masks.

Accuracy: 97.5591 + 4.1733
 AUC: 99.8111 + 1.3416
 Kappa: 95.6179 + 7.6275

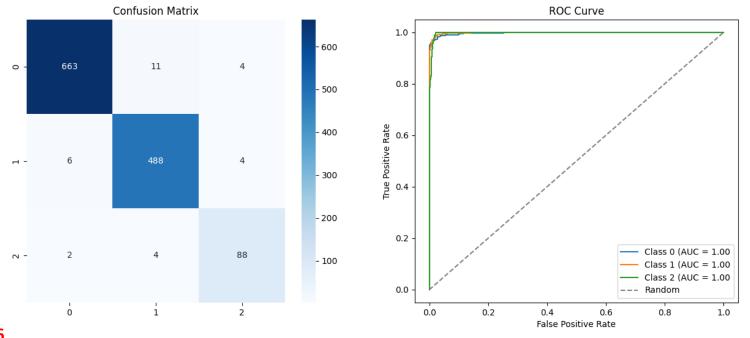
Target 0: Sensitivity: 97.7876 + 1.4749

Target 1: Sensitivity: 97.9919 + 3.4136

Target 2: Sensitivity: 93.6170 + 27.6596



Training time: 3 days, 9 hours



+ number – improvement made by the ensemble.