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[1/7] Augmentation & Pre-processing

1. CropFrame (@)

2. AdvancedHairAugmentation(?)

3. HorizontalFlip

4. VerticalFlip

5. Colorlitter

6. Rotate

8. OneOf (MotionBlur,
MedianBlur, GaussianBlur,
GaussNoise)

1. CropFrame(@

2. Resize

9. CLAHE

3. Normalize

10. Transpose

l

11. HueSaturationValue

12. Resize

7. RandomBrightnessContrast

13. Normalize

Returns:
- image

- segmentation mask ()
- label ()

(a) Custom pre-processing function added to the augmentation transformer with probability (p), (1. p = 100%, 2. p=50%).

(b) Depends on the experiment, we return the mask or None.
(c) Random labels for test as we don’t use it (labels are generally based on the filename (class) and index.




[1/7] Augmentation & Pre-processing — Hair Augmentation .,

[ Sample to segment ] [ Manual Hair Segmentation ] [ Resized, Adjusted Contrast ]

Segmented 5 hair samples from different lesions. The resize and contrast/intensity adjustment is to ensure that the augmented
hair is small & dark. Hair is augmented with random rotation, flip, sizes, and maximum 5 new hairs in each image [0 to 5].
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[1/7] Augmentation & Pre-processing (Results)




[2/7] Skin Lesion Segmentation ,,,,

Clear & simple to Very small & similar Multiple objects with A lot of hair on Black corners
segment objects surrounding lesion the lesion surrounding
| | _ A

* Purely image processing! Detailed methodology can be found in the appendix slides, as this is an optional step in the project
(vet improved the results).



[3/7] Architectures (Base/Single Model)

Outputs: features (that we combine) + attention masks

(that we use with our segmentation in the loss term)

Uses visual attention blocks, )
[ \

concatenates its output features to base Attention Blocks X 2
model feature vector, then into classifier |
i

layer.
intermediate fe / ‘

intermediate feature (pool3 I
" | o, o _ .
:ﬂ e | - ‘ } o 5 y s | input/output tensor = convolution
3 x 3 convolution + ReL max-poolin; 3 / //
. . : — > )% 5 el o ~7"| ReLU + convolution
Same base architecture for binary and Y 0 s (] 200

multi-class problem.

Model is trained from scratch! Loaded
pre-trained weights and initialized the

classifier and both attention blocks using l
‘kaiming normal’.

The authors used a single model and claimed to be the state-of-the-art with a single model, reaching auc = 88% with masks.
This model can work with/without masks.

Yan, Y., Kawahara, J., & Hamarneh, G. (2019). Melanoma recognition via visual attention. In Information Processing in Medical Imaging: 26th
International Conference, IPMI 2019, Hong Kong, China, June 2—7, 2019, Proceedings 26 (pp. 793-804). Springer International Publishing.



[3/7] Architectures (Ensemble) , )

VGG16_BN_Attention

Let’s call the entire model as VGG16 BN _Attention.

Our approach is to combine both train and valid splits,
the split into k-folds using StratifiedKFold; k=5.

Train k-Models, on every split. This is one way to

Attention Blocks

1

handle imbalance of challenge 2! Combine using
majority voting.

More robust results, as the valid split is always
balanced, more data to train.

Can work with/without masks; will be discussed later
in the configuration slides.
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[4/7] Configurations

Epochs
Learning Rates

Experiments
Controllers

Loss (No Mask,
Experiments 1, 2)

Loss (w/ Mask,
Experiments 3, 4)

Challenge 1 Challenge 2

50 (EarlyStopping stops with patience = 5)

0.0001 & 0.00001 (best results — avoided overfitting)

1. ClassifierExperiment.py (Base 1 Model / No Masks Used)
2. ClassifierExperimentCV.py (Base ensemble Models / No Mask Used)
3. ClassifierSegExperiment.py (Base 1 Model / Masks Used)
4. ClassifierSegExperimentCV.py (Base ensemble Models / Masks Used)
Lwce Lp, = FL(py) = —a(1 — p)Y log(p)*
( Weighted Cross Entropy) (Multi-class focal loss)
Challenge 1:
. _ A = 0.001
L = Lycg + M Dice(SegMask, AttMask1) + A,Dice(SegMask, AttMask?2) A, = 0.01
Challenge 2: AttMask = Attention Mask

SegMask = Segmentation Mask
L = Lg; + M Dice(SegMask, AttMask1) + A,Dice(SegMask, AttMask?2)

* Multi-class focal loss is initialized with weighted CE, making it handle class imbalance for challenge 2.
* The only difference between attention mask 1 and 2 are the sizes (different scale factor used).



[5/7] Results and Discussion — Challenge 1,

. , R
Single (Base) model results, trained on e Matrix

training split only. oo
Config: Preprocessing + ( Hair + overall)  ° 122 100
Augmentation + Masks. 1200
* Accuracy: 88.3825 _

« AUC: 88.2887
* Kappa: 76.7159 ] o -600
* Target O: Sensitivity: 93.6820 _

» Target 1: Sensitivity: 82.8954 . ' [+
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[5/7] Results and Discussion — Challenge 1 , 4

Ensemble model results trained on k=5
splits. Results only using top 3 accuracy
models (slight improvement than using
all 5)*. °

Config: Preprocessing + ( Hair + overall)
Augmentation + Masks.

* Accuracy: 93.9937 +5.6112

. AUC: 93.9561 +5.6674 L .
* Kappa: 87.9751 +11.2492J

* Target 0: Sensitivity: 96.1160 +2.4340
* Target 1: Sensitivity: 91.7962 +8.9008

* Combination Strategy: Majority Voting
* Training time: 5 days, 12 hours
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improvement made by the ensemble. Used for test.

* Results obtained from all 5 models on the validation can be found in the appendix.
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[5/7] Results and Discussion — Challenge 2 5,

Single (Base) model results, trained on Confusion Matrix

training split only. 600
Config: Preprocessing + ( Hair + overall) 200
Augmentation + Masks. o
«  Accuracy: 93.3858 a i
 AUC: 98.4695

* Kappa: 87.9904 200
«  Target 0: Sensitivity: 96.3127 N
* Target 1: Sensitivity: 94.5783 ,

* Target 2: Sensitivity: 65.9574

ROC Curve
1.0 1
0.8 §
&
Z 06
@
=
3
&
g 0.4
|,_
0.2 4
—— Class 0 (AUC = 0.99
—— Class 1 (AUC = 0.99
. —— Class 2 (AUC = 0.98
004 ¥ ——- Random
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

12




[5/7] Results and Discussion — Challenge 2 4,

Ensemble model results trained on k=5
splits. Results only using top 3 accuracy

models (slight improvement than using
all 5)*.

Config: Preprocessing + ( Hair + overall)
Augmentation + Masks.

* Accuracy: 97.7165 +4.3307

Confusion Matrix
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[6/7] Grad-CAM Visualization

Model Fold = 3, Challenge = 2, Split = Validation, Attention Map = 1 (pooling layer 3)
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[7/7] Conclusion

L Ensemble approach improves the results significantly, given the same (best) model is trained on different splits of the
dataset.
O Useful approaches to handle class imbalance:
O StratifiedKFold (with ensemble).
O Multi-class focal loss.

O Augmentation.

O Visual attention blocks + segmentation masks improved slightly the results, by contributing to the training loss.
L Augmenting the hair slightly increased the results, making the hair challenge not focused on a specific group of images,

and avoiding inpainting all the dataset.

Skin Hair Dataset (Drive Download): https://drive.google.com/drive/u/1/folders/1eNItv3y3yea7wxbmPUag8Vvydglss mb

Code (GitHub Repository): https://github.com/abdel-habib/ISIC2019-skin-lesion-classification-segmentation
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https://drive.google.com/drive/u/1/folders/1eNltv3y3yea7wx6mPUag8VvydgJss_mb
https://github.com/abdel-habib/ISIC2019-skin-lesion-classification-segmentation

[Appendix] Skin Lesion Segmentation

Raw Crop Frame, Extract Gaussian Filter, Mean Shift Filter
Hair CLAHE (Pyramid = 4)
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Keep Large.st Center Erode - Remove Remove Circular KMeans (K=2)

Region Lines Borders

Most of the lesions are in Helps removing remaining Removes microscopic
the center of the frame. hair corners (if not cropped)



[Ap pe N d |X] ArC h |te Ct ures ( Ba SE) Outputs: features (that we combine) + attention masks

(that we use with our segmentation in the loss term)

—

VGG16_BN Model Attention Blocks X 2
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' bilinear interpolation + Sigmaid

Yan, Y., Kawahara, J., & Hamarneh, G. (2019). Melanoma recognition via visual attention. In Information Processing in Medical Imaging: 26th
International Conference, IPMI 2019, Hong Kong, China, June 2—7, 2019, Proceedings 26 (pp. 793-804). Springer International Publishing.
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[Appendix] Results and Discussion — Challenge 1

Confusion Matrix ROC Curve

1800 104

Ensemble model results, trained using
k=5 folds (using all 5 models).
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* Target 1: Sensitivity: 91.2600 + 8.3646

 Combination Strategy: Majority Voting
* Training time: 5 days, 12 hours

+ number — improvement made by the ensemble.
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[Appendix] Results and Discussion

Ensemble model results, trained using
k=5 folds (using all 5 models).

Config: Preprocessing + ( Hair + overall)
Augmentation + Masks.

* Accuracy: 97.5591 +4.1733
* AUC:99.8111 +1.3416
* Kappa: 95.6179 +7.6275

Confusion Matrix

* Target 0: Sensitivity: 97.7876 +1.4749
» Target 1: Sensitivity: 97.9919 +3.4136 0 1 >
« Target 2: Sensitivity: 93.6170 *+27.6596

* Combination Strategy: Majority Voting

* Training time: 3 days, 9 hours
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