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Abstract

Recently medical image-text datasets have become increasingly important in the development of deep learning
applications, including automated radiology report generation models. Generating clinically valid radiology reports
comes along with challenges, such as bridging the gap between interpreting medical images and accurately conveying
the findings into radiology text reports. In this work, we tackle the task of automated mammography report generation
following Breast Imaging Reporting & Data System (BI-RADS) guidelines. We utilize an image-label and exam-
reports datasets, along with text prompting techniques, to generate a well-structured text report that supports training.
Our proposed framework allows the usage of up to four image views within the exam, leveraging different information
that can be captured from all exam views related to the radiology report. Our model demonstrated high performance
in supervised and zero-shot classification settings when evaluated on multiple downstream tasks, enabling report
generation as a series of zero-shot classification tasks.

Keywords: Mammography 2D X-ray, BI-RADS Report Generation, Contrastive Learning, Natural Language
Processing

1. Introduction

Medical images from different modalities such as
Mammography X-ray , Magnetic Resonance Imaging
(MRI), and Computed Tomography (CT) are widely
used to evaluate, monitor, and diagnose several medi-
cal conditions in clinical practice. Mammography X-
ray is a universally accepted method for breast can-
cer detection as it is relatively in-expensive, repeat-
able, and widely available (Fishman and Rehani, 2021).
Several applications demonstrated the effectiveness of
deep-learning based models on solving tasks related to
breast cancer detection in mammography, such in dis-
crimination of microcalcifications (Wang et al., 2016),
microcalcifications detection (Pesapane et al., 2023),
breast cancer risk discrimination (Yala et al., 2019),
and breast cancer image segmentation (Salama and Aly,
2021), and many others (Kallenberg et al., 2016; Mo-
hamed et al., 2018; Ribli et al., 2018).

Although deep-learning models, such as convolu-
tional neural networks (CNNs) by He et al. (2016);
Krizhevsky et al. (2012); Simonyan and Zisserman

(2014) have been widely applied for various artificial in-
telligence (AI) tasks in recent years (Han et al., 2021),
and has been actively used for the purpose of medical
image analysis (Anwar et al., 2018), the small size of
annotated and publicly available medical datasets re-
mains a major bottleneck in this area for developing
computer-aided detection/diagnosis (CAD) tools. Un-
like publicly available computer vision dataset that are
available in large-scale, such as ImageNet (Deng et al.,
2009) or OpenImages (Kuznetsova et al., 2020), pub-
licly available medical datasets are much smaller in
magnitude (Xie et al., 2021). This introduces challenges
in training deep-learning models for medical purposes
as the availability of high-quality clinical annotations is
time-consuming an costly (You et al., 2023), and obtain-
ing labels for medical images is very resource-intensive
as it relies on domain experts (Karimi et al., 2020).
Therefore, building effective medical imaging models
is limited by the lack of large-scale annotated medical
dataset.

Recently, Contrastive Language-Image Pre-training
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(CLIP) as in the work of Radford et al. (2021), has
achieved considerable success in computer vision and
natural language processing domains, by allowing joint-
training of image and text representation on large-scale
image-text pairs (Wang et al., 2022), enabling zero-shot
transfer of the model to downstream tasks. As shown by
Radford et al. (2021), zero-shot CLIP models are much
more robust than equivalently accuracy supervised Im-
ageNet models. In another work, ALIGN by Jia et al.
(2021) similarly to CLIP trains dual-encoder architec-
ture to learn the alignment of visual and language rep-
resentations of image and text pairs using contrastive
loss by leveraging noisy dataset of over one billion im-
age alt-text pairs. Both ALIGN and CLIP shows great
robustness on classification tasks with different image
distributions (Jia et al., 2021).

Considering CLIP, adopting such large vision-text
pre-training models to the medical domain is a non-
trivial task due to CLIP’s data-hungry nature that was
trained on 400 million (image, text) pairs collected from
the internet (Wang et al., 2022). In that context, the nat-
ural solution of limited annotated medical dataset is to
leverage the corresponding medical reports that contain
detailed description of the medical condition observed
by radiologists (Huang et al., 2021).

2. State of the art

2.1. Contrastive learning approaches

Several recent works to utilize both medical images
and text in the domain of chest X-ray (Huang et al.,
2021; Li et al., 2021; Wang et al., 2022; You et al.,
2023), using CLIP-based architecture. GLoRIA frame-
work by Huang et al. (2021) uses an attention mech-
anism by contrasting image sub-regions and words in
the paired report by learning attention weights that em-
phasize significant image sub-regions for a particular
word to create context-aware local image representa-
tion. MedCLIP by Wang et al. (2022) on the other hand
used unpaired images, text, and labels to enhance med-
ical multi-modal learning. However this makes it less
capable of retrieving the exact report for a given image
due to the effect of decoupling image-text pairs, and as
their approach relies on the performance of their rule-
based labeler, it is not scalable to other diseases that the
labeler can’t address (You et al., 2023).

DeCLIP by Li et al. (2021) introduced a novel
paradigm for data efficient CLIP that tackles the limi-
tation of training data availability similar to the amount
that CLIP was trained on through (1) self-supervision
within each modality, (2) multi-view supervision across
modalities, and (3) nearest-neighbor supervision from
other similar pairs. CXR-CLIP by You et al. (2023)
utilizes both image-text pairs not only from image-text
dataset, but also from image-label dataset, thus tackles
the lack of image-text data in the chest X-ray domain

by expanding image-label pair via general prompting.
In their work, they also used Multi-View Supervision
(MVS) as inspired by Li et al. (2021), utilizing multiple
images and texts in a chest X-ray study, such as two dis-
tinct images and texts pairs each using an augmentation
approach.

2.2. Convolutional neural network approaches
Other approaches have utilized convolutional neural

networks in generating medical image descriptions or
reports (Jing et al., 2017; Kisilev et al., 2016; Wang
et al., 2018). In the work of Kisilev et al. (2016), they
trained a CNN-based architecture to generate and rank
rectangular region of interests of breast mammography
and ultrasound modalities, where highest score candi-
dates are fed to the subsequent network layers, in which
they are trained to generate semantic description of the
remaining ROI’s. Their network is based on Faster R-
CNN architecture (Ren et al., 2015), and was trained on
mini-batches of positive and negative ROI candidates,
and requires rectangular ground truth bounding boxes.
Their main goal was to test the description stage of im-
ages using some descriptors such as mass shapes and
margins.

Other approaches as Jing et al. (2017) utilized a hi-
erarchical Long-Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997), apart of a multi-
task learning framework to generate long report para-
graph in chest X-ray domain. TieNet by Wang et al.
(2018) is a multi-purpose text-image embedding net-
work that utilizes report data together with paired im-
ages to produce meaningful attention-based image and
text representations in the chest X-ray domain. Their
approach also uses the paired text-image representations
from training as a priori knowledge injected, to improve
classification and generate text reports. They introduced
an attention encoded text embedding mechanism that
provides more meaningful text embedding, tackling the
challenge that comes along with long reports of multiple
information.

2.3. Limitations of current methods
Despite such novel contributions made in the medical

imaging chest X-ray domain using medical image-text
datasets, several challenges still exist in the mammogra-
phy X-ray domain, and specifically for BI-RADS report
generation, which are summarized as follows:

• Complications of mammography text reports.
Most of the present work utilizes chest X-ray
image-text datasets, where the paired reports could
be summarized under “impressions” and “find-
ings”, making it easy to extract text information for
training. Mammography text reports on the other
hand could contain additional information to the
X-ray radiologist report that can be used as gold
standard confirmation, such as ultrasound, MRI, or
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Figure 1: Example of mammography visual exam paired to different structure of text information, such as text report, extracted labels, or a prompt
generated sentences using a text template based on the available labels for the exam.

pathology reports. Those additional information
introduces challenges in identifying the best sec-
tion for training a network. For instance, mam-
mography X-ray radiology report could indicate
suspicious morphology for a study, however, ma-
lignancy is confirmed by a biopsy and from an
MRI exam. Such information can be mentioned
in the same report of a single exam study, making
it more challenging for the network to understand
the meaning of different sections available in the
patient reports.

• Pathology variability in different views. Un-
like the work that is presented by CXR-CLIP (You
et al., 2023), which utilizes up to two views with
augmentation, mammography X-rays could con-
tain up to four views (two for each breast - medi-
olateral oblique (MLO) and cranial caudal (CC)).
With that, it could be possible to have a specific
pathology in one breast and not in the other, in-
creasing the necessity of having a network that is
capable to process all four exam views and pair
them to the text dataset.

• Limited available data. Most image-text datasets
which are publicly accessible are available for dif-
ferent domains as chest X-ray (Bustos et al., 2020;
Johnson et al., 2019), unlike mammography X-ray.
And as the nature of its radiology reports, it is
even more difficult to find paired images and full
text reports, leaving a vast majority of image-label
datasets unused to tackle the report generation task.

2.4. Contributions of this work

The main contribution of this work is summarized as
follows:

1. To our knowledge, this is the first work to utilize
CLIP approach in mammography X-ray domain
for mammography report generation. We tackle
the lack of data by utilizing image-label and exam-
reports paired datasets, as well as generating text
prompts based on available labels to support the
training. Our method, namely MMG-CLIP, does
not depend on a ruler-based labeler, and doesn’t re-
quire bounding boxes or small-patched images for
training, and can be adapted to any image-label or
exam-reports dataset.

2. We implemented a training approach that utilizes
four views per exam, pairing them to the same
text description, whether a label, a generated text
prompt, or a report used during training or evalua-
tion.

3. Performance of our model is validated on mul-
tiple downstream classification tasks, using zero-
shot and supervised classification settings, as well
as measuring the performance with respect to data-
efficiency.

4. We introduced the report generation pipeline as a
series of zero-shot classification tasks following
BI-RADS guidelines, to obtain a clinical meaning-
ful draft report for the patient exam.



MMG-CLIP: Automated Mammography Reporting through Image-to-Text Translation 4

3. Material and methods

The aim of this work is to learn a multi-modal em-
bedding space from features that are extracted from an
image and text encoders, and projected to a similar em-
bedding dimension, to maximize the cosine similarity
of both image and text embedding of real pairs in each
batch, and minimize the cosine similarity of the incor-
rect embedding pairings, similarity to CLIP (Radford
et al., 2021). Our approach aims to learn the image level
or exam level characteristics of the 2D mammography
X-ray images, up to four image views per exam. Those
characteristics are also sampled from both image-label
and exam-report datasets, in addition to the prompt gen-
eration approach to support training. In the following
subsections, we further explain our work.

3.1. Data Sampling

To train the model, each batch consists of both visual
and textual information. Similarly to the work presented
by You et al. (2023), we utilize a set of images, how-
ever, each exam could contain to up to four image views.
Thus, each batch sample consists from one to four Ximg
images depending on their availability for each exam,
and Ttxt text. To simplify the following explanation, we
denote quantities related to the full exam as Xexam as in
equation 1.

Xexam = {Ximg}
4
img=1 (1)

In the case of image-label dataset, the sampled text
Ttxt could be the an exact single label, for instance ”be-
nign” or ”malignant” labels. Also, we use such la-
bels, with any other labels found for the image to gen-
erate prompts that supports the model training. Those
prompts we used contains more than one class label in-
formation, unlike the work of You et al. (2023) that only
consists of one class-specific information. We also con-
sidered cases where the image-label pairs are missing
labels information, making the prompts close to real
clinical reports and taking into account not only the
class information but their appearance.

For the exam-report dataset, the sampled text Ttxt
consists of the processed report information, using cer-
tain selected reports sections found in the report text.
In addition to that, as we had labels for the exams,
we also experimented the training performance with
generated sentences based on labelled data, known as
prompts, and with both reports and prompts combined.
We demonstrate a sample of image-prompt pairs from
the training set in Appendix A, where we used our
prompts as text input for training. We also took into
account that those prompts are applicable with the BI-
RADS guidelines and information that can be extracted
from it. Figure 1 demonstrates different types of mam-
mography datasets. Further details on the dataset and
prompting mechanism is elaborated in subsection 4.1.

3.2. Model Architecture

Motivated by CLIP by Radford et al. (2021), we pro-
posed slight modification to how the embedding are ex-
tracted from multiple exam views to allow processing
more than one mammography X-ray image at one time,
as well as text feature extraction, both are described in
subsections 3.2.1 and 3.2.2. In subsection 3.2.3, we de-
scribe the projection approach, that is necessary to align
the embedding to the same dimension. Finally, subsec-
tion 3.3 describes the loss term that trains the model.
All of this is summarized in Figure 2.

3.2.1. Image Encoder
The image encoder was used extract features from

each exam input image, where the encoder can be re-
ferred to as in the following equation 2.

x = Eimg(Ximg) (2)

where x ∈ R1×Dimg represent the feature vectors for
a single image view, and Eimg represents the image en-
coder. This is repeated for N number of exam views,
denoted as xexam where xexam ∈ RN×Dimg . The value Dimg
is the dimension of each vector. To obtain an overall vi-
sual representation of the exam, we average the values
of all feature vectors of all exam views along the 0-th
dimension, denoted at xf, which is computed as follow-
ing.

xf =
1
N

N∑
i=1

xexam(i) (3)

where xexam(i) represents the i-th column of matrix
xexam. The resulting xf has shape (1,Dimg) represent-
ing the final image embedding vector. In the case that
the network is trained at the image level where the in-
put consists of a single image paired with the text, the
averaging process is not performed and equation 2 is
denoted as xf.

The image encoder we used is a ConvNeXt Tiny
model (Liu et al., 2022), pre-trained on an internal
multi-vendor dataset from Fujifilm, GE HealthCare,
HOLOGIC, Lorad, Philips and Siemens Healthineers,
on large-scale dataset (>100K exams) for malignancy
classification. In addition to that, we used ResNet-50
model from He et al. (2016) with ImageNet weights
pre-trained on ImageNet tasks (Deng et al., 2009) in our
ablation study to assess the performance when using a
domain-specific pre-trained model to other pre-trained
models.

3.2.2. Text Encoder
The text encoder was used to extract features from the

input text. It can be described as the following equation
4.

tf = Etxt(Ttxt) (4)
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(a) Training Architecture (b) Report task zero-shot prediction

Figure 2: Summary of our approach motivated by CLIP (Radford et al., 2021). MMG-CLIP extracts features from both text and image view/exam
views, averages the image embedding, and projects them to predict the correct pairings of each batch. At inference, the network outputs unnor-
malized probability distribution for the input texts representing their probability to be paired to the input image. We aim to utilize this approach in
report generation where a draft report is generated as a sequence of zero-shot classification tasks based on BI-RADS guidelines.

where tf ∈ R1×Dtxt represents the text embeddings and
Etxt represents the text encoder. We used BioClinical-
BERT model by Alsentzer et al. (2019), which is a Bidi-
rectional Encoder Representations from Transformers
(BERT) based model as our text encoder, that was pre-
trained using clinical dataset MIMIC-III (Johnson et al.,
2016), similar to (Huang et al., 2021; Wang et al., 2022;
You et al., 2023).

We also used BiomedBERT previously named as
PubMedBERT (Gu et al., 2021), and BioGPT by Luo
et al. (2022) to compared the performance when using
BioClinicalBERT in our ablation study as in section 5.
BiomedBert is also a variant of BERT models (Devlin
et al., 2018), that was pre-trained from scratch on data
collection from PubMed 1 that consists of 14 million
abstracts and 3.2 billion words. This model was pre-
trained on biomedical domain-specific data compared
to BERT that is trained on Wikipidia 2 and BookCorpus
(Zhu et al., 2015) as cited in (Gu et al., 2021). BioGPT
is a variant of GPT large language models (LLMs), that
is a domain-specific generative Transformer language
model pre-trained on large-scale biomedical literature
for biomedical text generation and text mining (Luo
et al., 2022). It was pre-trained on 15M PubMed ab-
stracts from scratch on GPT-2 (Radford et al., 2019)
model configuration as a backbone, thus resulting into a
model with 0.355 billion parameters in total as cited in
Luo et al. (2022). In our experiments, we used all of the
pre-trained text encoders from from HuggingFace 3.

3.2.3. Embedding Projection
To align both the image embedding xf and text em-

bedding tf in the same multimodal feature space, we
trained linear layers as projection heads.

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.wikipedia.org/
3https://huggingface.co/

v =
fx(xf)
∥ fx(xf)∥

(5)

u =
ft(tf)
∥ ft(tf)∥

(6)

where fx is the projection head for the image em-
bedding, ft is the projection head for the text embed-
ding, v and u are the normalized projected embedding,
V = {v}ni=1, U = {u}ni=1, and n is the batch size.

3.3. Loss Function

For the loss, CLIP utilizes InfoNCE loss by Oord
et al. (2018) as cited in Li et al. (2021), which is a sym-
metrical loss for image and text encoder. It iteratively
trains both image and text encoders to maximize the co-
sine similarity of the image and text embedding of the
N real pairs in the batch, while minimizing the the co-
sine similarity of the image and text embedding of the
N2 − N incorrect pairs (Radford et al., 2021). This is
done by maximizing the alignment between both image-
text pair, pulling their embedding closer, versus random
pairs, pushing their embedding farther in the embedding
space. This loss consist of maximizing the posterior
probabilities of image embedding given its correspond-
ing text embedding and the other way around , this way
it ensures that the image-text correlation is asymmetric
to either modality.

The loss for the image encoder can be denoted as in
Equation 7, where as the loss for the text encoder can be
denoted as in Equation 8.

LI(U,V) = −
1
n

∑
ui∈U

log


exp
(

vT
i ui

τ

)
∑

v j∈V exp
(

uT
i v j

τ

)
 (7)

https://pubmed.ncbi.nlm.nih.gov/
https://www.wikipedia.org/
https://huggingface.co/
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LT(U,V) = −
1
n

∑
vi∈V

log


exp
(

uT
i vi

τ

)
∑

u j∈U exp
(

vT
i u j

τ

)
 (8)

where τ is a learnable temperature to scale logits, and
it is fixed to 0.07. It controls the range of the log-
its and is directly optimized during training as a log-
parameterized multiplicative scalar to avoid turning as a
hyper-parameter (Radford et al., 2021). The similarity
between the projected image embedding vi and text em-
bedding ui is measured by the dot product between the
embeddings.

The overall loss for a batch of image or exam and
text pairs using U,V notations can be described as the
average of LI and LT as in Equation 9.

LCLIP(U,V) =
1
2

(LI + LT) (9)

3.4. Interpreting Model Predictions and Outputs
At prediction, our network outputs logits, which are

unnormalized predictions, for each input text prompt as
shown in Figure 2b. We normalized the logits to obtain
normalized probabilities using a softmax layer, and thus
we match the text prompt with the highest similarity as
the correct prediction to the input image or exam. Fig-
ure 3 shows different evaluation examples we generated
on different classification tasks using the same input im-
age and different input text.

3.5. Evaluation Procedure
We evaluated our implementation based on the exper-

iments defined in Table 1, using both supervised classi-
fication and zero-shot classifications settings. The ob-
jective of comparing our image-label model trained on
malignancy classification to the same encoder used in
the network, which is a CNN, was to ensure that the
model is able to perform an easy binary or multi-class
classification task, thus we evaluated it using supervised
approach. We reported the Binary Area Under ROC
(AUROC) curve for binary tasks, and average AUROC
with standard deviation for multi-class tasks.

We then added more complexity in terms of visual
information or textual information (generated prompts
sentences or reports or both combined) and measured
the performance using zero-shot classifications using
a class-specific generated prompts, as demonstrated in
Figure 2b. We performed bootstrapping on 1000 sam-
ples, and averaged the AUROC of all of them, with the
95% confidence interval for binary tasks, and average
AUROC with standard deviation for multi-class tasks.
We also performed data-efficiency evaluation on differ-
ent training data percentages for zero-shot evaluation.
All experiments that uses single image as input will be
referred to as ”image level”, whereas all experiments

that uses an exam with several images will be referred
to as ”exam level”.

We also demonstrated the benefit of utilizing projec-
tion layers on top of the encoders we used by plotting
t-SNE by Van der Maaten and Hinton (2008) of the im-
age embeddings.

3.6. Computational Resources

All experiments were conducted on a NVIDIA TI-
TAN V GPU with 12GB of memory. The code was
implemented using PyTorch 1.13.1+cu116 in a Linux
environment.

4. Experiments Results and Discussion

4.1. Datasets

Image-Label dataset is annotated at the image level,
consisting of one mammogram view and several annota-
tion labels. At the high level, it consisted of 3311 benign
annotated files, and 3174 annotated as soft tissue lesions
(STL) files, making a total of 6485 samples. Those files
contained other several region level annotations, such as
architectural distortion, benign or malignancy, calcifica-
tion cluster or mass, and properties such as histology,
mass shape, mass margin, mass density, and subtlety.

Among all of the samples, we re-splitted the dataset
into more image level labels, either benign or malig-
nant. Those image views that were known as malignant,
but has benign label were eliminated as they could be
wrongly labelled. Thus a total of 3311 benign samples,
and 1653 malignant samples, with their internal region
level annotations. Table 2 summarises all of the labels
we used from this annotated dataset. Any “unknown”
label within this table means that the label was missing
in the original dataset.

Another internal annotated dataset that was used con-
sisted of 9696 ground truth annotations for other image
views samples (or included). This dataset consisted of
several annotations such as malignancy, asymmetry, cal-
cification, mass, histology, biopsy and several others.

Exam-Reports is an internal dataset that contains
four image views per exam (or less views if they were
not collected or available), and a long Dutch report. It
consists of 10,801 exam-report samples. Among all of
those samples, only 1832 were applicable to be used,
excluding several pathology, biopsy, or duplicates and
only selecting mammogram reports. We also extracted
labels from the sentences and manually translated them
to their English labels found in BI-RADS guidelines to
minimize the translation error.

Multi-label Prompts are sentences generated ran-
domly that contain one or more labels information.
These sentences are formed by randomly selecting a
template sentence describing each label, and concate-
nating them to form one or more sentences describing
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(a) Model output on two malignancy evaluation prompts (b) Model output on three mass shape evaluation prompts

(c) Model output on four mass margin evaluation prompts (d) Model output on four mass density evaluation prompts

Figure 3: Demonstration model inference output on four different examples, where all of the output similarities are normalized. We run different
inference text prompts on the same input image. In the figures, TP stands for True Positive.

the image or exam. Thus, forming a structured para-
graph used to train the network. The labels used for
generating the prompts are from any of the labelled
datasets, and the additional labels extracted from the re-
ports. The prompts text can be paired to either image
or exam level datasets, as explained in Table 1. The
process of generating the prompts can be found in Ap-
pendix B.

Table 3 summarizes the split of the datasets used for
training, validation, and testing, where it was (70%,
15%, and 15%) respectively. To make the results com-
parable, the exam-reports dataset test split was the exact
same test split for the image-label datasets.

4.2. Baseline
ConvNext Tiny model (Liu et al., 2022), that is the

same model used as an image encoder in our approach.
This encoder will be used as the baseline for malig-
nancy detection, when comparing to our models trained
on image-label experiment dataset.

4.3. Implementation Details
For the visual information, both at image and exam

levels, we did not perform any augmentation or pre-
processing. As text reports were originally in Dutch
language, we translated them after pre-processing to
standardise the training in English using the command
=GOOGLETRANSLATE(text column, “nl” , “en”) in
Google Spreed Sheets 4. Pre-processing included elim-
inating unnecessary reports samples, text cleanup that

4https://www.google.com/sheets/about/

includes cleaning redundant words, structures, spaces,
special characters, or patterns. As the nature of the
mammography reports could include additional gold
standard information that assist in evaluation of abnor-
malities, such as current study, ultrasound, mammo-
gram X-ray, MRI, pathology, we selected only three
types that we found contains most of the important
information, that are current study, mammogram X-
ray, and MRI. This was also performed during the pre-
processing. The post-processing of the text was per-
formed after the translation mainly to remove any dupli-
cate sentences within the text, as the performance will
heavily rely on the translation performance.

As for the embeddings, the final image and text em-
bedding sizes are 512. Both encoders were frozen and
only linear layers were trained on top of them. For both
image-label (either binary or multi-class) and image-
prompts experiments training, we used a single linear
layer. For any of the exam level experiments, we used a
2 trainable linear layers with a ReLU activation function
and dropout layer. By experimenting, we used dropout
value of 0.2. For the training, we tracked the valida-
tion loss curves and several other area under the ROC
(AUROC) values.

For all of the experiments, the early stopping condi-
tion was set with patience of 5 monitoring the validation
loss and a tokenizer sequence length of 256. For the
hyper-parameters, we used a cosine-annealing learning-
rate scheduler (Loshchilov and Hutter, 2016), with a
warm-up epoch of 0.1 and 30 trainable epochs, AdamW
(Loshchilov and Hutter, 2017) optimizer with an ini-
tial learning rate 5e-5, [EOS] token’s final output as the

https://www.google.com/sheets/about/
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Experiment Name Description Input Example

Image-Label Training with images and labels.

Image-Prompts Training with images and prompts
generated.

Exam-Reports Training with exams and reports
text.

Exam-Reports + Prompts Training with exams and reports
text combined with prompts.

Exam-Prompts Training with exams and prompts
generated.

Table 1: Experiments description and the datasets used in each of them.

global textual representation, and weight decay 1e-4 fol-
lowing the work of You et al. (2023). For image-label
experiments, we used a batch size of 32 samples for all
three splits, whereas for the remaining experiments, we
used batch size of 64.

4.4. Classification
We started by evaluating the learned representa-

tion on several image classification tasks based on our
image-label dataset available labels mentioned in Table

2, using both supervised image classification and zero-
shot classification settings. In both settings, as men-
tioned earlier, we only trained linear projection layers
on top of the pre-trained encoders.

4.4.1. Supervised Image Classification
For the supervised classification, as our baseline

CNN encoder was pre-trained on malignancy task, we
trained our network on the malignancy labels of the
image-label dataset, and compared the results area un-
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Label Group Labels Names Count

Malignancy Benign 3311
Malignant 1653

Mass Margins

Unknown 2467
Ill defined 1095
Obscured 697
Spiculated 484
Circumscribed 221

Mass Shapes

Unknown 2466
Irregular 1218
Round 681
Oval 599

Architectural Distortion Normal 4842
Distortion 122

Calcification No Calcification 2969
Has Calcification 1995

Mass No Mass 278
Mass 4686

Table 2: Image-Label dataset description.

Dataset Split Count
Image-Label or Train 3474
Image-Prompts Valid 1490

Test 745
Exam-Reports or Train 1282
Exam-Reports + Prompts or Valid 550
Exam-Prompts Test 745

Table 3: Datasets split summary. First row summarizes the image
level splits, either using labels or prompts depending on the experi-
ment, and second row summarizes the exam level splits.

der the ROC curve (AUROC) of the true class. We also
trained a network for the other labels of the dataset and
reported the results in Table 4. In our results, we show
that our network was able to outperform a traditional
CNN performance on malignancy detection by training
a single linear layer. Our network also performed well
on the remaining classification tasks. The main objec-
tive was to ensure that the network is capable of learning
a simple label classification task, either binary or multi-
class using the learned representation from both image
and text modalities.

4.4.2. Zero-shot classification
For the zero-shot prompt classification, the network

was trained and evaluated on different experiments, thus
different representations. The constructed evaluation
text prompts were specified to target the model perfor-
mance in understanding the clinical meaning of the text
input as a full sentence. Therefore, we constructed a
class-wise inference prompt for each label task. Those
inference prompts are different from the prompts gener-
ated for training, and can be found in Table 6. We evalu-
ate the binary classification tasks by computing the AU-
ROC of 1000 bootstrapped samples with 95% CI, and

computed the average AUROC for multi-class classifi-
cation tasks with standard deviation. We also evaluated
the performance on both datasets, at image and exam
level training, and to make the evaluation fair, all exper-
iments were evaluated on the same test samples at the
image level.

As shown in Table 5, both experiments image-
prompts and exam-prompts outperform all other exper-
iments, where those experiments were trained on dif-
ferent dataset samples, and on the same text prompt-
ing approach we proposed. Training the network with
well structured sentences as the generated prompts per-
forms better than training with real radiologist reports
as the nature of the text reports when they are written,
they are not generally standardised. This can be also
demonstrated when training the network with exam-
reports and exam-reports + prompts, where including
the prompts improved the results as demonstrated in the
table. It is also worth noting that each experiment row
in Table 5 is a single model performance, thus shows the
ability in generalizing to different downstream tasks.

4.5. Data-efficiency Evaluation

We further evaluated the model performance for zero-
shot classification taking into account different sizes of
training dataset samples (10%, 20%, 50%, and 100%),
on malignancy detection. In Figure 4, we show that
both of our models, either trained on image-label malig-
nancy task, or on exam-prompts experiments improve
the performance when more training data is used, track-
ing their malignancy AUROC metric for all of the test
samples. The image-label trained model shows only
slight improvement as the encoder only performance
(in red color) is high, so training linear layers on top
of the pre-trained encoder improves its ability in malig-
nancy zero-shot classification for this specific dataset. It
demonstrated a consistent high performance on all per-
centages of the training data. The exam-prompts model
that is trained on more visual and textual information
showed a significant improvement in the malignancy
zero-shot detection with different percentages, indicat-
ing that the model is effectively learning from the addi-
tional data.

4.6. Report Generation

To generate a radiology report, we defined a report as
a series of zero-shot classification tasks. Those can be
specific based on BI-RADS mammography guidelines,
or general to any other inference task. To generate a re-
port, we used the exam-prompts experiment model, and
constructed a series of inference tasks. The final step
of the report generation includes formatting all outputs
into a template sentences and concatenating the results
to form a single report. In Figure 5, we demonstrate a
summary of our report generation pipeline. At the top
level, an inference task is made to validate if an image
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Binary AUROC ↑ Average Multi AUROC (± std) ↑

Experiments Malignancy Arch. Dist. Mass Calcification Mass Shapes Mass Margins

CNN (Baseline) 0.9153 - - - - -

Image-Label 0.9402 0.8293 0.8005 0.8820 0.8023 (± 0.078) 0.8344 (± 0.089)

Table 4: Comparison of area under the ROC (AUROC) of different experiments and classification tasks (binary and multi-class) using one-vs-all
classification evaluation on image level experiments. Total 745 samples of the image-label dataset test split were used. In the table headers, Arch.
Dist. stands for architectural distortion.

Average Binary Bootstrap Samples AUROC (95% CI) ↑ Average Multi AUROC (± std) ↑

Experiments Malignancy Arch. Dist. Mass Calcification Mass Shapes Mass Margins

Image-Prompts 0.931 0.682 0.663 0.680 0.727 0.715
(0.905-0.953) (0.554-0.808) (0.564-0.755) (0.639-0.719) (± 0.120) (± 0.154)

Exam-Reports 0.828 0.637 0.475 0.567 0.596 0.560
(0.791-0.861) (0.504-0.78) (0.3721-0.572) (0.524-0.610) (± 0.079) (± 0.089)

Exam-Reports 0.847 0.646 0.527 0.683 0.848 0.594
+ Prompts (0.814-0.878) (0.509-0.791) (0.425-0.619) (0.644-0.723) (± 0.088) (± 0.094)

Exam-Prompts 0.916 0.717 0.678 0.736 0.700 0.639
(0.891-0.938) (0.620-0.804) (0.603-0.743) (0.701-0.772) (± 0.106) (± 0.218)

Table 5: Comparison of the average area under the ROC (AUROC) of different experiments and classification tasks (binary and mutli-class) using
zero-shot classification evaluation on both image and exam level experiments. For binary tasks, we bootstrapped 1000 samples, and computed
the average AUROC and 95% CI. For the multi-class tasks, we computed the average AUROC ± standard deviation. Total 745 samples of the
image-label dataset test split were used. In the table headers, Arch. Dist. stands for architectural distortion.

Label Group Input Evaluation Prompt
Malignancy Findings suggesting {label}.
Mass Margins Mass margins is {label}.
Mass Shapes Mass shape is {label}.
Architectural Normal architecture is visible.
Distortion Displayed architectural distortion.

Calcification No calcifications are present.
Finding suggesting calcifications.

Mass No mass was observed.
Findings revealed a mass.

Table 6: Zero-shot evaluation prompts for all label groups. The {label}
are replaced with the labels reported in Table 2, that are based on BI-
RADS guidelines.

or exam either has a mass, calcification, or no findings.
As “No Findings” ends the report, it doesn’t require any
further evaluation for mass or calcification information,
thus we report directly a conclusion sentence as shown
in Figure 6b.

Both “Mass” and “Calcification” in Figure 5 have
their own generation pipeline. In “Mass” track, we eval-
uate the malignancy, mass shape, mass margins, BI-
RADS score, and architectural distortion. As for “Cal-
cification” track, we evaluate malignancy, distribution,
BI-RADS score, and architectural distortion. An exam-
ple for a report generated for an exam with malignant
mass findings is shown in Figure 6a, where as an ex-

Figure 4: Image-label and exam-reports models (ours) zero-shot per-
formance for malignancy classification using different amount of data,
without bootstrapping.

ample for a report generated for an exam with benign
calcification is shown if Figure 6c.

One important limitation of our report generation is
the decision condition taken for all prompts output sim-
ilarities generated from the model. If the model fails on
identifying the correct type of findings at the very first
level of the generation pipeline, all following evaluation
results will be wrong. Figure 6d shows a failed example
of a report generated as “No Findings”, where it con-
tains other types of findings. As we take the maximum
similarity value of all text-prompts output similarities,
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Figure 5: Report generation pipeline. Symbol [letter] represent the
inference task output, and + represent output formatting and concate-
nation.

we are not able to distinguish between a strong predic-
tion (with high probability for a specific text prompt)
or for a confused prediction (when all probabilities are
close to each others). Another concern is whether an
exam or an image has more than one finding similar to
both “Mass” and “Calcification” together. When tak-
ing the maximum similarity, we result with having only
one output text to the inference task, thus can’t combine
multiple texts as an output.

4.7. Embedding Visualization

Data visualization using dimension reduction ap-
proaches can assist in understanding the geometric and
neighborhood structures of datasets (Wang et al., 2021).
A popular tool to perform dimensional reduction is the
t-distributed Stochastic Neighborhood Embedding (t-
SNE) algorithm (Shah and Silwal, 2019), introduced by
Van der Maaten and Hinton (2008), or principal compo-
nent analysis (PCA). We performed t-SNE analysis on
both the embeddings from the CNN encoder as in Fig-
ure 7a and 7c, as well as on the linear layers on top of the
encoder as in our model in Figures 7b and 7d. The fig-
ures demonstrates the separation of “benign” and “ma-
lignant” embeddings classes of the malignancy classifi-
cation task as an output of the networks projected into
lower dimensional using t-SNE.

As shown in Figures 7a and 7b, both networks gener-
ates a well clustered points of both labels. Using the
CNN only however shows some overlap between the
two classes, indicating that the baseline CNN encoder
does not completely distinguish between them. Adding
linear layers on top of the pre-trained encoder does
slightly produce better clusters as it focuses on the spe-
cific characteristics and patterns present in our datasets,
thus making it perform better on our test cases and pro-
vides more distinct clusters with less overlap. We also

visualized the first dimension of t-SNE with respect to
the models probabilities to belong to malignancy class
as shown in Figures 7c and 7d. Both Figures indicates
positive correlation between the t-SNE dimension 1 and
malignancy probabilities, where the model with projec-
tion layers as in Figure 7d shows more distinct and re-
liable probability estimates for malignancy, as there is a
clearer separation between both labels cases compared
to the baseline encoder alone in 7c.

4.8. Limitations and Future Work
Despite that we reached promising results in our ex-

periments, we believe that there are improvements that
can be made.

Embedding pairing is a challenging task in medi-
cal image-text datasets as the nature of the visual and
textual information can be paired to more than one sam-
ple. For example, an image can contain several regions
of interest, where it can be described correctly in two
separate reports sentences of two different exams. This
makes the loss metrics not meaningful when it comes to
training as pairing a single image-text pairs might not
be meaningful when the network learns the global rep-
resentation of all of the input data. This also was ob-
served when training with large batches (that are possi-
ble to have reports with similar information) on a small
datasets like ours, but not observed when using a very
small batch size as the possibility of having two samples
of same findings is much lower. We experimented im-
plementing different variations of CLIP InfoNCE loss
taking into account the batch samples and other sam-
pling mechanisms to tackle the problem, however none
of the approaches we tried proved better learning when
when it comes to long text reports. Thus, a meaningful
contrastive loss would be very beneficial for the network
to be able to match medical image-text datasets. For ex-
ample, region-wise matching between image and text
information, or giving more weights to certain regions
could potentially improve the network loss mechanism.

Report generation. When it comes to generating
report, as we mentioned earlier we use the maximum
similarity output as the final task result before creating
a report. Trying different decision making approaches
could be useful in generating more precise reports, but
it also requires human intelligence and clinical valida-
tion. One case that we noticed could be failing repeti-
tively is when network received 5 input prompts, and the
five similarities values are very close to each other, us-
ing the maximum value might not be ideal. Also, some
report details have more importance than others, for ex-
ample malignancy classification, or differentiating be-
tween the presence of mass, calcification, or no findings,
compared to other sub-tasks like mass region or calci-
fication distribution. The decision making here plays
an important role in the report accuracy, and taking the
maximum similarity value might not always be the best
case. Thus, other decision making approaches such as
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(a) Exam level generated report revealing a malignant mass (b) Image level generated report revealing no findings

(c) Exam level generated report revealing a benign calcification (d) Image level failed generated report

Figure 6: Demonstration of report generation using a full exam as in (a), and (c), or a single image view as in (b) and (d). Text highlighted in green
is a correct prediction from the network, where text highlighted in red are wrong predictions. Yellow highlighted text has no label to compare with.

applying a threshold value to the similarities could be
explored in future work.

Pre-training the encoders on large scale datasets
could significantly improve the performance when and
generalization of the model. As we used pre-trained
encoders, the extracted features relies on their perfor-
mance as well as on the performance of the trained lin-
ear layers. And as we had a very small amount of data
to work on, we were not able to train the models from
scratch.

Network Architecture can be improved to localize
the presence of the pathology reported in the text to
which exam view it is found in. This can significantly
improve the reporting precision if the network is capable
of identifying which view exactly has more importance.
In our implementation, while training the network, we
averaged the features extracted from each of the input
image views, thus losing the anatomical location of the
pathology it contains. For example, when a mass ap-
pears in the “right MLO image view” in an exam, we
lose such information while averaging the embedding.
Having that considered can also improve the feature ex-

traction approach to assign more weights to important
views and less to others.

5. Ablation Study

Ablation on model architecture. To understand the
effectiveness of the architectural parameters and key
components, we conducted ablation study using differ-
ent parameters and components with respect to malig-
nancy zero-shot classification performance. All results
reported in Table 7 were trained using the best exam-
prompts experiment model. We used different train-
ing configurations to evaluate their impact on zero-shot
classification performance on one task.

In the first row, we evaluate different number of pro-
jection layers. From the reported results, 2 Linear Pro-
jection layers gave the best zero-shot performance for
our model and no indication of increased performance
when more trainable layers are used.

In the second row of Table 7, we used the default
2 projection layers with different training batch sizes.
The default value we used was batch size n=64 with
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(a) CNN Encoder (Baseline) (b) CNN Encoder + Projection Layers

(c) t-SNE dimension 1 vs malignancy probabilities for the CNN Encoder
(d) t-SNE dimension 1 vs malignancy probabilities for the CNN Encoder +
Projection Layers

Figure 7: Image embedding visualization of malignancy Image-Label dataset for both CNN encoder (Baseline) alone ours that includes projection
layers on-top of the encoders.

tokenizer sequence length of 256 for exam-prompts ex-
periment model where it obtained 0.916 (0.891-0.938).
Both n=32 and n=128 showed no significant improve-
ment on the performance as reported in the table. Sim-
ilarly to the tokenizer sequence length in the third row,
both sequence lengths 384 and 512 didn’t improve the
performance of our default value. In addition to that, we
observed that using a logit scale τ = 0.07 performs bet-
ter than without performing scaling to the logits during
training as in the last row reported in the table.

Ablation on inference prompts. As mentioned pre-
viously, our evaluation prompts contribute significantly
to the results we obtained, as we believe it targets the
clinical meaning behind the label we are evaluating. To
measure the impact of changing the inference prompts

during zero-shot settings, we experimented using CXR-
CLIP by You et al. (2023) evaluation prompts for zero-
shot and compared the results to ours. In this evalua-
tion, we are not comparing our results to theirs, as it is
using totally different datasets in different domains, but
only comparing our model behaviour to different eval-
uation prompts. In CXR-CLIP, they used the prompts
“{classname}” versus “No {classname}” for all labels
they evaluate, for example “No oval” versus “oval”
for “Mass Shapes” task, and then using prediction of
the “{classname}” to generate the results. We noticed
that this introduces a challenge for our network when
it comes to multi-class evaluation, where it performs
poorly using their prompting mechanism compared to
ours, for example “Mass shape is oval”. Table 8 shows
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Experiments AUROC (95% CI) ↑

MMG-CLIP
w/ 1 proj. layers 0.893 (0.864-0.920)
w/ 2 proj. layers 0.916 (0.891-0.938)a

w/ 3 proj. layers 0.910 (0.882-0.933)

MMG-CLIP
w/ batch size = 32 0.908 (0.883-0.933)
w/ batch size = 128 0.912 (0.885-0.936)

MMG-CLIP
w/ seq. length = 384 0.910 (0.885-0.933)
w/ seq. length = 512 0.906 (0.877-0.929)

MMG-CLIP
w/ logit scale = 1 0.8876 (0.858-0.913)
(no scale)

a Value obtained using the default experiment parameters as 2 proj.
layers, batch size = 64, seq. length = 256, logit scale τ = 0.07.

Table 7: Ablation study of key architectural parameters with respect to
different parameters and components. The reported scores are the av-
erage AUROC of 1000 bootstrapped samples with 95% CI on malig-
nancy zero-shot classification. In the table, proj. layers is projection
layers, seq. length is the tokenizer sequence length.

Experiments AUROC (± std) ↑

MMG-CLIP
w/ CXR-CLIP prompts 0.587 (± 0.074)
w/ our prompts 0.700 (± 0.106)

Table 8: Ablation study of different evaluation prompts used to eval-
uate zero-shot settings. The reported scores are the average AUROC
(± std) for all labels curves on ”Mass Shapes” task.

that with our evaluation, we obtain higher score for
“Mass Shapes” task when using our prompts compared
to using CXR-CLIP evaluation prompts.

Ablation on pre-trained clinical text encoders.
As we used pre-trained text encoder BioClinicalBERT
model by Alsentzer et al. (2019) and not pre-training our
own due to the limited number of training data, the net-
work performance heavily relies on the performance of
the pre-trained text encoder. To understand the impact,
we analyzed our network performance using other large
language models of different parameter sizes as our text
encoder. In Figure 8a, we compared the performance
of our model trained using exam-prompts experiment,
similar to the evaluation approach reported in Table 5.

As shown in Figure 8a, BioClinicalBERT model as
our text encoder outperforms both BiomedBERT and
BioGPT in performance for all zero-shot classification
tasks. This supports idea of having a domain spe-
cific pre-trained model on clinical text datasets when
it comes to learning medical text reports from other
domains, and encourages pre-training a mammography
specific text encoder for future work. Following Bio-
ClinicalBERT is BiomedBERT, where it shows a bal-

(a) Different LLM models performance as text encoders.

(b) Different vision models performance as image encoders.

Figure 8: Comparison between using different vision and large lan-
guage models as encoders in our network on zero-shot classification
tasks on the exam-prompts experiment model. Values on the axis (0,
0.25, 0.75, and 1) are average AUROC values for 1000 bootstrapped
samples for binary tasks, and average AUROC for multi-class tasks.

anced performance across most tasks with particular
strength for both “Mass” and “Malignancy”. It also sup-
ports the idea that BERT variant models tends to out-
perform GPT variant models which are more commonly
used in generation tasks (Luo et al., 2022). BioGPT was
the least in performance as it had very low metric val-
ues, close to randomness. Thus, both BioClinicalBERT
and BiomedBERT are more suitable text encoders en-
coding medical text given their performance on our var-
ious tasks, and could potentially be used in pre-training
a BERT model for mammography domain-specific data.

Ablation on pre-trained vision image encoders. To
assess the performance of a domain-specific pre-trained
model as an image encoder such as our pre-trained Con-
vNeXt Tiny image encoder, we used a ResNet-50 model
and applied transfer learning approach to its last layer
(layer 4), with similar training configurations. In Figure
8b, we show that having a pre-trained model on domain-
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specific knowledge significantly outperforms a model
pre-trained on general vision task, where our ConvNext
Tiny model performed better in all tasks. ResNet-50
model had consistent and balanced performance and
was not biased to a specific task.

6. Conclusions

In this work, we proposed an image-text contrastive
learning framework named MMG-CLIP as well as a re-
port generation BI-RADS specific pipeline for mam-
mography X-ray 2D images. Our implementation in-
cludes not only training the network at the image or
exam level (multiple images) with medical text, but also
utilises multi-class generated prompt text to improve
the model performance on zero-shot classification tasks.
MMG-CLIP showcases remarkable flexibility due the
multi-modality and zero-shot learning ability. Our ex-
periments results shows the network data-efficiency and
zero-shot capability of the learned representations for
various downstream classification tasks.
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Appendix A. Data sampling for image-prompts experiment

Figure .9: Example of image-prompts pairs sampled from training dataset.

Appendix B. Prompt generation approach using labelled data.

Figure .10: Demonstration of prompt generation mechanism using multiple labels.
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